02,08

Экспериментальное исследование гармонического смесителя на основе последовательной цепочки YBaCuO бикристаллических джозефсоновских переходов в режиме нулевого смещения

© В.А. Анфертьев 1 , Д.В. Мастеров 1 , А.Е. Парафин 1 , Л.С. Ревин 1,2,¶

Нижний Новгород, Россия

Поступила в Редакцию 18 апреля 2024 г. В окончательной редакции 18 апреля 2024 г. Принята к публикации 8 мая 2024 г.

Рассчитаны, изготовлены и измерены последовательные цепочки ВТСП джозефсоновских переходов с оптимизированной лог-периодической антенной, работающие в режиме смешения ТГц-сигналов. Показано, что синхронная работа переходов приводит к увеличению интегральной поглощенной мощности и, как следствие, увеличению динамического диапазона. Обнаружены два режима: при низких температурах наблюдается рассогласованное возбуждение переходов в цепочке, при высоких температурах возникают "гигантские" ступени Шапиро, свидетельствующие о синхронизации переходов. Проведены исследования характеристик смесителя с использованием операции смешения с высшими гармониками гетеродинного сигнала. Для оптимального уровня накачки частотой 3 GHz обнаружена ненулевая амплитуда промежуточной частоты при смешении с сигналом 120 GHz на 40 гармонике. Показано, что в оптимальном режиме работы смесителя конфигурация последовательной цепочки позволяет использовать режим нулевого смещения.

Ключевые слова: высокотемпературный сверхпроводник, джозефсоновский переход, гармонический смеситель, последовательная цепочка.

DOI: 10.61011/FTT.2024.06.58234.9HH

1. Введение

Сверхпроводящие устройства, основанные на эффектах Джозефсона, обладают уникальными свойствами генерации и смешивания гармоник, которые используются в экспериментах с конца 1960-х годов. Известно, что в джозефсоновских переходах возможны различные режимы работы гармонического смесителя [1–3]. При этом смешение на джозефсоновской нелинейности рассматривалось ранее как паразитный эффект, приводящий к дополнительным шумам, поэтому в смесителях сверхпроводник-изолятор-сверхпроводник критический ток подавляется. Но в недавних работах была показана возможность преобразования в джозефсоновском режиме без существенного увеличения шумов [4–6].

Хотя высокотемпературные сверхпроводники (ВТСП) уже давно считаются перспективными материалами для создания высокочастотных джозефсоновских устройств, недавние впечатляющие результаты в этой области [7,8] дают новый толчок данному направлению.

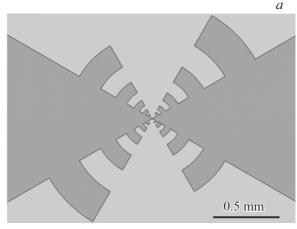
Одним из основных недостатков технологии ВТСП является достаточно низкий импеданс джозефсоновских переходов (ЈЈ). Нормальное сопротивление R_N перехода обычно составляет несколько Оhm для стандартной геометрии переходов шириной $2-3\,\mu\text{m}$, что не соответствует характерному импедансу антенн или копланарных линий порядка 50 Ohm.

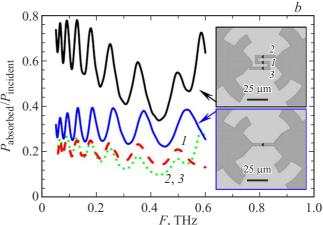
Один из возможных способов решения данной проблемы состоит в замене одного перехода на последовательную цепочку переходов. Мощность принимаемого сигнала и импеданс можно увеличить до уровня практического применения, если все переходы в последовательном массиве работают в режиме синхронизации. Кроме того, массив JJ может также решить проблему насыщения гармонического смесителя, возникающую с увеличением частоты сигнала или порядка гармоник. В работе [9] было получено повышение отношения сигнал/шум на выходе промежуточной частоты (IF) на 5 dB при смешении 11-й гармоники. В работе [10] было замечено, что амплитуда IF очень слабо зависит от точки смещения цепочки ВТСП переходов. Таким образом, для смесителя с джозефсоновским переходом возможна работа с нулевым смещением, и это имеет большое преимущество, заключающееся в том, что не требуется источник постоянного тока, и, следовательно, в переходе не возникает эффекта нагрева или дробового шума из-за постоянного тока.

В данной работе демонстрируется джозефсоновский смеситель с нулевым смещением, состоящий из трех последовательных YBaCuO бикристаллических переходов, соединенных меандром и интегрированных в логпериодическую антенну. Проведены исследования ступеней Шапиро при различных температурах образца для разных частот GHz-сигнала. Обнаружены два режима:

¹ Институт физики микроструктур РАН,

² Нижегородский государственный технический университет им. Р.Е. Алексеева, Нижний Новгород, Россия


[¶] E-mail: rls@ipmras.ru


при низких температурах наблюдается рассогласованное возбуждение переходов в цепочке, при высоких температурах возникают "гигантские" ступени Шапиро, свидетельствующие о синхронизации переходов. Продемонстрировано смешение сигналов на высоких гармониках.

2. Электромагнитное моделирование

На первом этапе было проведено электромагнитное моделирование смесителя с лог-периодической антенной (рис. 1, a) для получения эффективного приема сигнала в частотном диапазоне 50-600 GHz [11]. Моделирование было выполнено в программе CST Microwave Studio. В качестве численного метода использовался метод конечных разностей. Параметры подложки были выбраны в соответствии с экспериментальными данными: толщина подложки — 0.5 mm; диэлектрическая проницаемость — 24, тангенс потерь — 0.0045. Исследованы амплитудно-частотная характеристика (АЧХ) системы и диаграмма направленности. Для случая использования одиночного джозефсоновского перехода в качестве приемного элемента получена плавная амплитудночастотную характеристика во всем диапазоне частот с максимальным откликом 0.39P incident и величиной главного лепестка диаграммы направленности 15.7 dBi при угловой ширине 15°. Чтобы улучшить согласование между приемной системой и антенной была рассмотрена конструкция с тремя последовательными джозефсоновскими переходами. На рис. 1, в видно, что интегральная мощность, поглощаемая тремя переходами, больше, чем мощность, поглощаемая одним переходом, в 2.3 раза. Кроме того, видно, что положения резонансов амплитудно-частотной характеристики для случая последовательной цепочки отличаются от резонансов для одиночной полоски. И чем больше частота, тем сильнее отличия. Более того, АЧХ для "крайних" портов начинает заметно отличаться от АЧХ центрального порта от 500 GHz. Выше 500 GHz появляются дополнительные резонансы. Это связано с индуктивностью меандра, импеданс которого по оценкам составляет примерно 30 Ohm на 500 GHz. Поэтому при работе на высоких частотах становится важным уменьшение длины меандра. В модели не учитывалась кинетическая индуктивность ВТСП сверхпроводника, которая для определенных задач является ключевой. В данном случае мы оценили кинетическую индуктивность по формуле [12] L^k (на квадрат) = $\mu_0/2\lambda_L=10^{-13}\,\mathrm{H}$, где μ_0 — магнитная постоянная, $\lambda_L=0.15\,\mu\mathrm{m}$ — лондоновская глубина проникновения в YBaCuO сверхпроводнике. Таким образом, кинетическая индуктивность составляла $2 \cdot 10^{-12} \,\mathrm{H}$, а импеданс на 500 GHz-6 Ohm. Значение близко к импедансу геометрической индуктивности, и в дальнейшем должно быть учтено в модели.

Хотя интегральная принимаемая мощность цепочки увеличивается из-за лучшего согласования с антенной, каждый отдельный переход в массиве получает меньшую мощность, чем в случае с одним ЈЈ в антенне. За

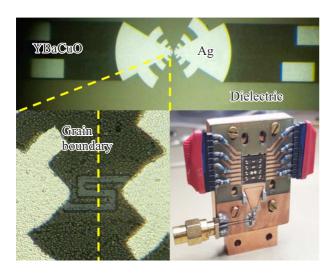


Рис. 1. a — лог-периодическая антенна, b — отношение поглощенной мощности к падающей для двух разных случаев. Синяя кривая — один переход в антенне; черная кривая — три последовательных перехода. Красная пунктирная линия — поглощение в центральном переходе цепочки. Зеленые точки — поглощение в крайних переходах цепочки. На вставках — геометрия центральной части смесителя для двух случаев.

счет последовательного соединения в общую приемную систему элементы распределяют мощность между собой. Чем больше элементов, тем меньше мощности поступает на каждый отдельный переход. Это позволяет также увеличить динамический диапазон приемника.

3. Схема измерений

Смешение сигнала осуществлялось на основе эффекта Джозефсона в ВТСП сверхпроводнике. Пленка YBaCuO сверхпроводника толщиной $0.1\,\mu\mathrm{m}$ была напылена методом задающей маски [13] на поверхность бикристаллической $Zr_{1-x}Y_xO_2$ подложки с углом разориентации 24° в плоскости [001]. Мостик пересекал границу бикристалла 3 раза, так, что в результате получалась цепочка джозефсоновских переходов, каждый из которых имел ширину $3\,\mu\mathrm{m}$. Цепочка была интегрирована в лог-

Рис. 2. Фотография ВТСП гармонического смесителя. Сверху — пленка YBaCuO с антенной и контактными площадками из серебра. Снизу слева — область вблизи бикристаллической границы. Снизу справа — образец, смонтированный на держатель.

периодическую планарную антенну для широкополосной связи с внешним излучением (рис. 2).

ВТСП смеситель был установлен на кремниевую линзу в криоохладитель Гиффорда-Мак-Магона, рис. 3. Полезный сигнал от лампы обратной волны (ЛОВ) передавался по квазиоптической схеме с фторопластовой линзой, инфракрасными фильтрами и сверхразмерным волноводом.

Сигнал на промежуточной частоте получался с использованием операции смешения с высшими гармониками гетеродинного сигнала, который излучался с помощью монопольной антенны и принимался смесителем. Длина монопольной антенны составляла 4 mm,

а расстояние до образца — 2 mm. Источником гетеродинного сигнала являлся микроволновый генератор R&S SMB100A с частотным диапазоном от 100 kHz до 20 GHz. Для передачи сигнала гетеродина использовалась одна и та же антенна. Из-за этого амплитудночастотная характеристика была сильно изрезана, а потери составляли 20-30 dB. Благодаря тому, что для накачки ВТСП-смесителя не требуется большая мощность, мы могли выбрать оптимальную мощность гетеродина для каждой частоты. Тем не менее, такой способ передачи опорного сигнала является неоптимальным, поэтому в настоящее время реализована другая схема, в которой с помощью диплексера сигнал гетеродина передается по коаксиальному кабелю на плату смесителя. Сигнал промежуточной частоты регистрировался анализатором спектра Gratten GA. Предварительный усилитель SBB5089Z, расположенный на холодной плите криостата, вместе с комнатным усилителем давали усиление $52 \, dB$ при шуме $-64 \, dBm$ в диапазоне частот $1-3 \, GHz$ в полосе 3 МНz. Шум самого анализатора спектра составлял примерно $-90 \, dBm$ в полосе $3 \, MHz$ и давал малую добавку к шуму системы. Источник постоянного тока с батарейным питанием использовался для управления смесителем.

4. Результаты

На рис. 4, a показаны измеренные вольт-амперные характеристики (BAX) смесителя в зависимости от температуры. Для низких температур $50-10\,\mathrm{K}$ видны резкие изменения наклонов BAX, обусловленные выходом из сверхпроводящего состояния в резистивное каждого из переходов в отдельности. На рис. 4, b изображен критический ток I_C в зависимости от температуры. Разброс по критическому току среди переходов составил $\sim 20\%$. При этом, как и ожидалось, R_N (3 JJ) $\sim 3 \times R_N$ (1 JJ).

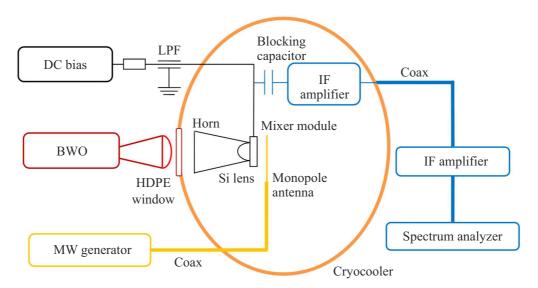
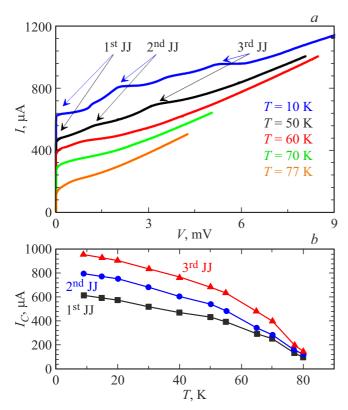
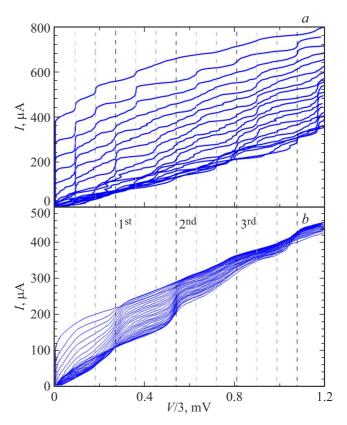
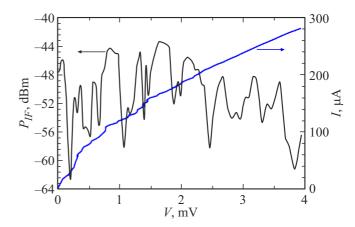



Рис. 3. Схема спектральных измерений.


Рис. 4. a — Вольт-амперные характеристики смесителя при различных температурах. Стрелочками показан выход из сверхпроводящего состояния каждого перехода в цепочке. b — зависимость критического тока от температуры для каждого перехода в цепочке.

Несмотря на существенный разброс параметров переходов, для высоких температур массив демонстрирует ВАХ, близкую к предсказаниям резистивной модели, и можно ожидать, что переходы будут синхронизованы внешним излучением.


На рис. 5 показаны ВАХ смесителя под действием внешнего высокочастотного излучения $f_{THZ} = 130 \, \text{GHz}$ разной мощноси для двух температур. Для исследования синхронных состояний последовательных переходов напряжение было нормировано на один переход, то есть измеряемое значение V делилось на 3. Для низкой температуры 10 К на ВАХ появляются множество ступеней Шапиро. Черными пунктирными линиями отмечены напряжения, удовлетворяющие джозефсоновской зависимости напряжения от частоты, серыми пунктирными линиями — напряжения при 2/3 напряжений ступени, светло серыми пунктирными линиями — напряжения при 1/3 напряжений. Все ступени Шапиро, соответствующие состояниям с синхронизацией [14], находятся при напряжениях, удовлетворяющих джозефсоновскому соотношению $V/3 = n\Phi_0 f_{\text{THZ}}$, где n — номер целой ступени Шапиро, Φ_0 — квант потока. Под состоянием синхронизации здесь понимается синхронизация, возникающая в результате резонанса с высокочастотным воздействием. Ступень, находящаяся при напряжении $\Phi_0 f_{THZ}/3$,

свидетельствует о том, что синхронизуется только один переход, ступень при напряжении $2\Phi_0 f_{\text{THZ}}/3$ — два перехода, и так далее.

При температуре 77 К на вольт-амперной характеристике видны "гигантские" ступени Шапиро только при

Рис. 5. Вольт-амперные характеристики смесителя под действием внешнего сигнала 130 GHz. Черные пунктирные линии — положение первой ступени Шапиро в нормировке на один переход. a — температура смесителя T=10 K. b — температура смесителя T=77 K.

Рис. 6. Вольт-амперная характеристика смесителя под действием внешнего сигнала 175 GHz и опорного сигнала 21.6 GHz. Левая ось — амплитуда линии промежуточной частоты, правая ось — постоянный ток на смесителе.

напряжениях $n\Phi_0 f_{\rm THZ}$, что говорит о синхронной работе всех трех переходов.

Были проведены эксперименты по гармоническому смешиванию при температуре 77 К. На рис. 6 по-казана вольт-амперная характеристика под действием высокочастотного сигнала 175 GHz малой мощности и сигнала накачки частотой ~ 21.6 GHz. Величина линии на промежуточной частоте $P_{\rm IF}$ (левая ось на рис. 6) как правило имеет максимум в центре ступени Шапиро. Такое поведение наблюдалось для одиночного перехода [16,17]. Но, в отличие смесителя с одиночным переходом, массив демонстрирует максимум IF около нулевого тока, сравнимый с абсолютным максимумом амплитуды промежуточной частоты для данных условий.

Дальнейшие исследования позволили обнаружить амплитуду линии промежуточной частоты при смешении сигнала 120 GHz и 40 гармоники опорного сигнала частотой 3 GHz. Кроме того, исследована зависимость амплитуды IF от мощности накачки при смешении сигнала 170.22 GHz и 17 гармоники опорного сигнала 9.973 GHz; а также 33 гармоники опорного сигнала 5.137 GHz.

5. Заключение

В результате работы рассчитаны, изготовлены и измерены последовательные цепочки ВТСП джозефсоновских переходов с оптимизированной лог-периодической антенной. Показано, что синхронная работа переходов приводит к увеличению интегральной поглощенной мощности и, как следствие, увеличению динамического диапазона. Проведены исследования характеристик смесителя с использованием операции смешения с высшими гармониками гетеродинного сигнала. В результате удалось обнаружить ненулевую амплитуду IF при смешении сигнала 120 GHz и 40 гармоники опорного сигнала частотой 3 GHz. Показано, что в оптимальном режиме работы смесителя конфигурация последовательной цепочки позволяет использовать режим нулевого смещения, а также достичь смешения на высокой гармонике опорного сигнала.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда, проект № 20-79-10384-П.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- B. Leridon, P. Febvre, S. George, P. Feautrier, W.R. McGrath. J. Appl. Phys. 82, 3024 (1997).
- [2] H. Wang. Appl. Phys. Lett. 66, 370 (1995).
- [3] H.B. Wang, Y. Aruga, T. Tachiki, Y. Mizugaki, J. Chen, K. Nakajima, T. Yamashita, P.H. Wu. Appl. Phys. Lett. 75, 2310 (1999).

- [4] K.V. Kalashnikov, A.V. Khudchenko, A.M. Baryshev, V.P. Koshelets. J. Commun. Technol. Electron. 56, 699 (2011).
- [5] К.В. Калашников, А.А. Артанов, Л.В. Филиппенко, В.П. Кошелец. ФТТ 58, 2117 (2016).
- [6] K.V. Kalashnikov, A.A. Artanov, G. de Lange, V.P. Koshelets. IEEE Transact. Appl. Superconductivity 28, 2400105 (2018).
- [7] M. Yu, H. Geng, T. Hua, D. An, W. Xu, Z.N. Chen, J. Chen, H. Wang, P. Wu. Supercond. Sci. Technol. 33, 025001 (2020).
- [8] D. Cunnane, J.H. Kawamura, N. Acharya, M.A. Wolak, X.X. Xi, B.S. Karasik. Appl. Phys. Lett. 109, 112602 (2016).
- [9] T. Matsui, B. Komiyama, H. Ohta. IEEE Trans. Mag. 25, 1072 (1989).
- [10] J. Konopka, I. Wolff, S. Beuven, M. Siegel. IEEE Trans. Appl. Supercond. 5, 2443 (1995).
- [11] E.I. Glushkov, A.V. Chiginev, L.S. Kuzmin, L.S. Revin. Beilstein J. Nanotechnol. **13**, 325 (2022).
- [12] В.В. Шмидт. Введение в физику сверхпроводников. Изд. 2е. МЦМНО, М. (2000). 402 с.
- [13] D.V. Masterov, A.E. Parafin, L.S. Revin, A.V. Chiginev, E.V. Skorokhodov, P.A. Yunin, A.L. Pankratov. Superconductor Sci. Technology 30, 025007 (2017).
- [14] D. Dominguez, H.A. Cerdeira. Phys. Rev. Lett. 20, 3359 (1993).
- [15] A. Klushin, W. Prusseit, E. Sodtke, S.I. Borovitskii, L.E. Amatuni, H. Kohlstedt. Appl. Phys. Lett. 69, 1634 (1996).
- [16] M. Malnou, A. Luo, T. Wolf, Y. Wang, C. Feuillet-Palma, C. Ulysse, G. Faini, P. Febvre, M. Sirena, J. Lesueur, N. Bergeal. Appl. Phys. Lett. 101, 233505, (2012).
- [17] M. Malnou, C. Feuillet-Palma, C. Ulysse, G. Faini, P. Febvre, M. Sirena, L. Olanier, J. Lesueur, N. Bergeal. J. Appl. Phys. 116, 074505, (2014).

Редактор Т.Н. Василевская