
Technical Physics Letters, 2024, Vol. 50, No. 4

01.1

Microexplosion model of hydrocarbon−water composite droplets: an

accurate solution
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The paper presents an analytical solution to the problem of temperature dynamics inside a composite spherical

droplet consisting of a water microdroplet located in the center of a liquid hydrocarbon droplet around which hot

gas flows. To the hydrocarbon−water boundary the coupling conditions are imposed, while for the outer boundary

the condition of heat exchange with hot gas is defined. The unsteady temperature of the composite droplet is

represented by the eigenfunctions expansion of the Sturm−Liouville problem. The results of calculations via the

obtained analytical formula agree satisfactorily with experimental data.
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Water−organic fuel emulsions are promising in view of

reducing pollutant releases and increasing the efficiency

of organic fuel droplets dispersion due to boiling up of

water microdroplets located inside hydrocarbon droplets.

Composite fuels are studied both experimentally and the-

oretically [1–6].

A number of papers [7–9] have proposed a simple math-

ematical model and approximate solution to the problem of

temperature dynamics within a composite fuel droplet. In

those works, a droplet is represented as a spherical volume

of heavy hydrocarbon (diesel fuel), in the center of which

there is a water microdroplet. In solving the problem, the

fluid convective motion inside a non-isothermal droplet is

assumed to be negligible. This simplification is valid for

high-viscosity diesel fuel droplets less than a few millimeters

in diameter.

The method for solving the model problem proposed

in [7] is unreasonably cumbersome and hardly reproducible.

In the framework of modern methods of mathematical

physics, this problem is solved by conventional expansion

of the Sturm−Liouville problem in terms of eigenfunctions.

Besides, the solution method [7] exhibits a number of

fundamental inaccuracies. First, the problem is defined

with a first-kind boundary condition instead of a third-kind

one which is consistent with the experimental conditions.

Second, the given description of the temperature distribution

in the hydrocarbon is incorrect. The Bessel equations have

two independent solutions: a first-order Bessel function

having a finite value at zero, and a second-order one with

logarithmic divergence at zero. Temperature distribution in

hydrocarbon should include spherical Bessel functions of

both the first and second order. Third, the correct solution

of the problem provides an analytical formula in the form of

a series in eigenfunctions, which does not require numerical

integration over time. The temperature may be obtained

from the solution formula for any moment and any point of

the droplet.

The goal of this paper was to present a brief summary of

the conventional method for finding an analytical solution

based on expansion in a system of orthogonal eigenfunc-

tions.

Fig. 3, b presents a schematic illustration to the prob-

lem. Having the initial temperature, a spherical liquid-

hydrocarbon droplet (Oil) and water microdroplet (Water)
located in its center get into the hot gas flow having

temperature 2G . Due to heating, surface temperature of the

water microdroplet reaches boiling point 2Wboil during time

tboil . Fig. 1, b demonstrates an example of the temperature

distribution within a composite droplet calculated via the

analytical solution described below.

Under the experimental conditions with which the cal-

culations are being compared, the contribution of radiative

heat transfer is significantly lower than that of convective

heat transfer and, thus, is neglected in calculations. The

equation for the composite droplet temperature and formula

for the initial temperature distribution are

ρc
∂2

∂t
= λ12, 2

∣

∣

∣

t=0
= 20. (1)

Here ρ, c , λ are the composite droplet density, heat capacity

and thermal conductivity coefficient. Let us designate the

water and hydrocarbon droplet temperatures as

2(r, t) =

{

2W (r, t), r < RW ,

2O(r, t), RW < r < RO,

where RW , RO are the radii of the water droplet and

hydrocarbon droplet surface; thermophysical properties of
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hydrocarbon and water are different

ρ, c, λ =

{

ρW , cW , λW , r < RW ,

ρO, cO, λO, RW < r < RO .

At the media interface, the coupling conditions are

satisfied (the temperature and heat flow continuity):

2W
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∣

∣
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.

(2)
To the droplet surface, the boundary condition of convec-

tive heat exchange according to the Newtonś hypothesis is

imposed. The calculations imply that the heat transferred to

the drop is spent on its heating and evaporation of liquid

from the droplet surface:

−λO
∂2O

∂r

∣

∣

∣

∣

r=RO

= αO

(

2O

∣

∣

r∈RO
−2G

)

− ρO1HO
dRO

dt
. (3)

Here αO is the heat exchange coefficient in case the hot

gas flows around the evaporating droplet [10]; 1HO is the

evaporation enthalpy.

The symmetry boundary condition is imposed on the

droplet center:
∂2W

∂r

∣

∣

∣

∣

r=0

= 0. (4)

During heating the composite droplets to the water

boiling point, evaporation changes the hydrocarbon droplet

volume only slightly, and hereinafter the droplet radius is

assumed to be constant, namely dRO/dt = 0 [9].
Equation (1), coupling conditions (2), boundary condi-

tion (3) exclusive of variations in the droplet volume, and

symmetry condition (4) shall be reduced to a dimensionless

form. Dimensionless temperatures of water and hydro-

carbon are 2∗

W = (2W −2G)/2G , 2∗

O = (2O −2G)/2G .

Dimensionless coordinate is r∗ = r/RO . Dimensionless

time is defined as t∗ = κOt/R2
O (κO = λO/(ρOcO) is the

hydrocarbon thermal conductivity coefficient). Hereinafter,

dimensionless variables are marked with asterisks.

Let us try to find the problem (1)−(4) dimensionless

solution in the form of a series in terms of zero-order

spherical Bessel functions. The temperature distribution

in hydrocarbon includes spherical Bessel functions of the

first and second order, while that in the water microdroplet

includes first-order spherical Bessel functions automatically

meeting symmetry condition (4). The Sturm−Liouville

problem for calculating eigenfunctions and eigenvalues of

the Laplace operator with a discontinuous transfer coef-

ficient is set up. Based on the coupling conditions, the

eigenfunction functional form shall be defined.

Boundary condition (3) provides a characteristic equation
whose numerical solution gives the eigenvalues. Fig. 2, a

demonstrates the shape of function 9O(ω∗) whose roots ω∗

n

are the eigenvalues. Breaks of the problem eigenfunctions at

the media interface (Fig. 2, b) are caused by the difference

in thermophysical properties of water and hydrocarbon.
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Figure 1. The problem schematic diagram (a) and an example of

the composite droplet temperature dynamics (b).

Fig. 1, b demonstrates the dimensionless temperature dy-

namics in the composite droplet. The calculations were

performed via the analytical formula

2∗(r∗, t∗) =

∞
∑

n=1

An exp(−ω∗2
n t∗)X∗

n (r∗), (5)

where An are the expansion coefficients determined based

on the initial temperature distribution,

An =
1

‖ X∗
n ‖2

1
∫

0

ρ∗c∗2∗

0(r
∗)X∗

n (r∗)r∗2dr∗,

‖ X∗

n ‖2=

1
∫

0

ρ∗c∗X∗2
n (r∗)r∗2dr∗.

Here c∗, ρ∗ are the discontinuous heat capacity and density

of the composite droplet, ‖ X∗

n ‖ is the eigenfunction norm.
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Figure 2. a — illustration to the characteristic equation solution.

The points represent eigenvalues ω∗

n ; the volume fraction of water

is χW = 22%. b — Sturm−Liouville problem eigenfunctions

X∗

n (r∗) of different orders: n = 7 (1) and 5 (2).

In calculation, the hydrocarbon droplet diameter shall

be preset, while the water microdroplet diameter shall be

determined based on the volume concentration specified

in the experiments. Temperature of the hot gas flowing

around the droplet, gas velocity, and initial temperature

of the composite drop shall be preset. Via the analytical

formula in dimensionless coordinates, the moment when

the temperature of the water microdroplet surface reaches

the boiling point shall be determined. This time is assumed

to be the microexplosion delay time.

In calculations, the first 31 terms of expansion in

eigenfunctions (5) are taken into account. Increasing the

number of terms in the series does not significantly affect

the calculation results.

In experiments [7–9,11], the time necessary to heat the

composite droplet to the initial boiling point is recorded;

this time is regarded as the microexplosion delay time.

Fig. 3 shows the calculations obtained via analytical

formula (5) of the time necessary for heating the water

microdroplet surface to the boiling temperature. As the

model hydrocarbon, N-dodecane (n-dodecane C12H26) was

chosen [7]. Fig. 3, a demonstrates the effect of initial

temperature of the composite droplets 50 < dO < 200 µm

in diameter on the time of heating till the microexplosion.

As the droplet size increases, the share of radiative heat

transfer enlarges, which reduces the microexplosion delay

time. Since the boundary condition allowing for the

radiative heat transfer is nonlinear, a closed analytical

solution can hardly be obtained in this case. Therefore, the

d , mmO

8

16

0
75 20015050 175100

4

20

25 125

12

t
, 
m

s
b
o
il

Q  = 700 KGc  = 22%W

1

2

3

4

5

Q , KG

8

16

0
513 633 693573

4

20

453

12

t
, 
s

b
o
il

(0)
Q  = 290 KOil

c  = 30%W

1

2

V  = 15 mlO

Diesel (exp. data)

Oil (exp. data)

a

b

Figure 3. Comparison of calculations of the composite-fuel

droplet heating time with experimental data. a — the effect of

the initial temperature of composite droplets 50 < dO < 200 µm in

diameter on the time of heating to the microexplosion. Points 1 —
experimental data [7,8], points 2 — calculations via the model

given in [7]. Lines are the results of calculations via (5) at droplet

temperatures 20
Oil = 363 (3), 353 (4) and 343 K (5). b — time

tboil for droplets dO = 3mm in diameter versus gas temperature

2G . Points represent the experimental data [11], lines are the

calculations via formula (5) at flowing gas velocities UG = 1 (1)
and 2m/s ( 2).
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radiative heat transfer is ignored in deriving the analytical

solution. Notice that this approximation is used in the

referred publications.

Fig. 3, a clearly shows that calculations via the model

given in [7] are significantly lower than experimental data.

Fig. 3, b shows the effect of gas temperature on the

time of heating droplets dO = 3mm in diameter (volume

VO ≈ 15µl) by the hot gas flow. In the experiments [11],
the gas velocity was UG = 2m/s.

During the experiment, the droplets were suspended on

specially twisted wires and retained an almost spherical

shape. The n-dodecane boiling point exceeds 200◦C. The

calculations show that, during the microexplosion time

delay, the hydrocarbon surface temperature was no less

than 50◦C below the boiling point. The heavy-hydrocarbon

saturated vapor pressure at the droplet surface temperature

is low, and evaporation-induced mass loss from the surface

during the experiment may be neglected. This conclusion

has been also confirmed by the estimates presented in

almost all the referred papers. Weak internal convective

motion of the highly viscous fluid is detectable only in large

droplets greater than 3mm in size [11]. Internal convective
heat transfer of viscous n-dodecane was neglected in

calculations.

Thus, the paper presents an analytical solution to the

problem of heating a droplet of hydrocarbon−water com-

posite fuel. Comparing the calculations with experimental

data, we can conclude that, contrary to the calculations ob-

tained by the model presented in [7], the correct solution of

the problem ensures satisfactory agreement with experiment

and does not need additional empirical modifications [8,9].
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