01,15

Стоковые силы малоугловых границ наклона для собственных точечных дефектов в ОЦК-железе и ванадии

© А.Б. Сивак¹, В.М. Чернов²

¹ Национальный исследовательский центр "Курчатовский институт", Москва, Россия ² Высокотехнологический научно-исследовательский институт неорганических материалов им. академика А.А. Бочвара, Москва, Россия

E-mail: Sivak_AB@nrcki.ru

Поступила в Редакцию 4 июня 2024 г. В окончательной редакции 4 июня 2024 г. Принята к публикации 6 июня 2024 г.

Для малоугловых границ наклона, образованными дислокационными стенками из прямолинейных краевых дислокаций в системах скольжения $\langle 111 \rangle \{110\}$ и $\langle 111 \rangle \{112\}$, в ОЦК металлах Fe и V рассчитаны стоковые силы для собственных точечных дефектов (вакансий, межузельных атомов) и преференсы (относительные разности стоковых сил для межузельных атомов и вакансий). Расчеты проведены объектным кинетическим методом Монте-Карло в диапазоне температур 293–1000 К, углов разориентировки $1.5-10^{\circ}$ и размеров субзерен 150-900 a (a — параметр кристаллической решетки). Упругое взаимодействие собственных точечных дефектов в стабильных и седловых конфигурациях (упругих диполей) с упругими полями дислокационных стенок рассчитано в рамках анизотропной теории упругости (металлы Fe и V существенно различны по степени упругой анизотропии). Стоковые силы малоугловых границ не зависят (в пределах расчетной точности) от их типа (системы скольжения дислокаций). Преференс меняется с температурой в пределах 15-30% и обратно пропорционален углу разориентировки и размеру субзерен. Преференсы в Fe и V существенно различны (для V в разы меньше).

Ключевые слова: малоугловые границы наклона, стоковые силы, преференсы, железо, ванадий.

DOI: 10.61011/FTT.2024.07.58387.147

1. Введение

Поля внутренних напряжений в металлах оказывают значительное влияние на образование и кинетику собственных точечных дефектов (СТД: вакансий и межузельных атомов), определяя дополнительные (по сравнению с их отсутствием) особенности образования и распада их твердых растворов при термических и радиационных воздействиях. Дислокации и дислокационные скопления являются основными источниками внутренних напряжений в металлах [1,2]. В системе "дислокационное скопление — СТД" формируются процессы, влияющие на радиационные свойства металлов (распухание, упрочнение, ползучесть, разрушение). Эти процессы зависят от симметрии кристаллических решеток, степени упругой анизотропии металлов и типов образующихся в них структурных дефектов [1,2]. В связи с этим представляется важным исследовать влияние полей напряжений от дислокаций и дислокационных скоплений (в том числе, малоугловых границ наклона) на их стоковые силы для СТД в металлах с разными степенями упругой анизотропии. Результаты исследования таких процессов являются основой для дальнейшего построения и развития моделей формирования и изменения микроструктуры (образование и подвижность дислокаций) и свойств (жаропрочность, распухание, ползучесть, др.) металлов

при внешних воздействиях разной природы (радиационных, термических, механических) и интенсивности.

История теоретических и модельных расчетов стоковых сил малоугловых границ и их преференса (относительное различие стоковых сил для СМА и вакансий) насчитывает более четырех десятилетий [3–6]. Однако в [3–6] взаимодействие между малоугловыми границами и СТД рассматривается с использованием изотропных моделей среды и СТД (СТД рассматривается как сферическое включение в изотропной среде), в то время как реальные металлы являются упруго-анизотропными со специфическими типами и системами скольжения дислокаций. Симметрия СТД отлична от сферической (например, упругие диполи, соответствующие седловым конфигурациям СМА и вакансии в ОЦК-кристаллах Fe и V, обладают моноклинной и тригональной симметрией соответственно [7]).

Важный научный и практический интерес представляют объемно- центрированные кубические (ОЦК) металлические кристаллы Fe и V, являющиеся основой для разработки конструкционных сталей и сплавов для ядерных и термоядерных энергетических реакторов. В настоящей работе рассматриваются дислокационные скопления в виде малоугловых границ наклона (МУГН дислокационные стенки, состоящие из прямолинейных краевых дислокаций в основных системах скольжения

(111){110} и (111){112}) в ОЦК-кристаллах Fe и V. Упругие поля таких МУГН и их влияние на образование и направление миграции СТД в рамках анизотропной теории упругости были изучены ранее [7]. Расчеты стоковых сил МУГН для СТД проводятся с помощью объектного кинетического метода Монте-Карло (ОКМКметод) с учетом как упругой анизотропии рассматриваемых металлов Fe и V, так и симметрии основных седловых конфигураций СТД в этих металлах. На основе получаемой сетки численных значений стоковых сил МУГН при дискретном наборе значений параметров задачи (интервалы температур 293-1000 К, углов разориентировки субзерен 1.5-10°, размеров субзерен 150-900 а, а — параметр решетки) строятся аналитические выражения, позволяющие рассчитать стоковые силы МУГН для произвольных значений параметров в указанных интервалах.

2. Метод расчета стоковых сил МУГН

Стоковые силы МУГН для СТД определялась с помощью ОКМК-метода, использовавшегося ранее для определения стоковых сил сеток равномерно распределенных в пространстве дислокаций разных типов [8–10]. Упругое взаимодействие между МУГН и СТД, рассматриваемых как упругие диполи (вакансия и собственный межузельный атом в стабильных и седловых конфигурациях), рассчитывалось в рамках анизотропной линейной теории упругости [7]. Учитывалось взаимодействие СТД с двумя ближайшими к нему дислокационными стенками, т.к. взаимодействие с остальными дислокационными стенками мало, чтобы оказывать заметное влияние на результаты расчетов. В ОКМК-расчетах для всех температур упругие поля МУГН рассчитывались с использованием значений упругих постоянных для близких к абсолютному нулю температур [11,12], т.к. тестовые расчеты при самой высокой рассмотренной температуре (1000 К) показали, что учет температурной зависимости упругих постоянных (упругой анизотропии) приводит к несущественному изменению стоковых сил не более, чем на 3%, а относительной их разности для СМА и вакансий (преференс) — не более, чем на 1%.

Схематическое изображение расчетной ячейки представлено на рис. 1. Расчетная ячейка представляла собой прямую призму с основанием в виде прямоугольника, вдоль центральной оси которой лежит одна из дислокаций стенки. На боковые грани призмы наложены периодические граничные условия (ПГУ). Длины сторон прямоугольного основания, L_x и L_y , выбирались таким образом, чтобы получить требуемые расстояния между соседними МУГН и угол разориентировки субзерен Θ соответственно ($\Theta = 2 \arctan[b/(2h)] \approx b/h$, b -модуль вектора Бюргерса дислокациями в стенке, $h = L_y$). L_x выбирали равным 150, 300, 600, 900 a, a -параметр решетки. L_y выбирали равным $L_y = 33$,

Рис. 1. Схематическое изображение расчетной ячейки для ОКМК-расчетов стоковых сил МУГН, состоящей из набора параллельных дислокаций (поглощающих цилиндров радиусом *r*₀). Прямоугольник — расчетная ячейка. Дислокации вне расчетной ячейки — изображения, создаваемые ПГУ.

16,5, 10, 5*a*, что соответствует углам разориентировки $\Theta = 1.5, 3.0, 5.0, 10^{\circ}$.

Стоковая сила МУГН k² определялась через длину диффузионного пробега СТД до гибели на дислокациях стенок k^{-1} $(k^2 = 6/(\langle N \rangle \lambda^2))$, где $\langle N \rangle$ — среднее число скачков СТД от рождения до гибели на стоке, $\lambda^2 = 3a^2/4$ — квадрат длины скачка СТД в ОЦКрешетке). Считалось, что СТД поглощался дислокацией стенки при его приближении к дислокации на расстояние, меньшее величины $r_0 = 3a$. Такое значение r_0 выбрано, следуя [10], где было показано, что выбор значений r_0 , меньших 3a, не оказывает заметного влияния на рассчитанные величины k², т.к. полевое взаимодействие между СТД и дислокациями вносит определяющий вклад в величину k^2 . Из соображений удобства, также будет обсуждаться безразмерная величина стоковой эффективности дислокаций стенок (или МУГН-дислокаций), определяемая как

$$\xi = k^2 / \rho_{\rm d} = k^2 L_x L_y, \tag{1}$$

где $ho_{\rm d}$ — плотность МУГН-дислокаций в кристалле.

Для каждого типа СТД и МУГН моделировалось 10⁵ траекторий, что обеспечило уровень относительной случайной погрешности в 1% (доверительная вероятность 99%).

Также рассчитывались стоковые силы и эффективности МУГН-дислокаций без учета взаимодействия МУГН с СТД, обозначаемые как k_0^2 и ξ_0 соответственно. В таких расчетах r_0 варьировался в пределах 1-10a, L_y в пределах 5-66a, L_x — в пределах 150-900a. Для каждого типа СТД и МУГН моделировалось 10^6 траекторий, что обеспечило уровень относительной случайной погрешности в 0.3% (доверительная вероятность 99%).

3. Результаты

По результатам ОКМК-моделирования оказалось, что значения стоковых сил МУГН, состоящих из дислока-

Θ	<i>Т</i> , К	$L_x = 150a$		$L_x=300a$		$L_x = 600a$		$L_x = 900a$	
		ξ^+	ξ	ξ^+	ξ	ξ^+	ξ	ξ^+	ξ-
1.5°	293	5.67	2.84	1.93	1.39	0.796	0.678	0.498	0.449
	400	4.92	2.59	1.80	1.32	0.771	0.661	0.488	0.440
	600	4.12	2.36	1.66	1.25	0.742	0.643	0.476	0.432
	800	3.64	2.25	1.57	1.22	0.720	0.635	0.466	0.428
	1000	3.34	2.19	1.50	1.20	0.707	0.629	0.459	0.426
	293	2.21	1.62	0.845	0.734	0.373	0.349	0.238	0.228
	400	2.08	1.54	0.823	0.713	0.368	0.342	0.236	0.226
3.0°	600	1.91	1.44	0.792	0.693	0.361	0.339	0.234	0.224
	800	1.80	1.41	0.771	0.681	0.356	0.336	0.232	0.222
	1000	1.72	1.38	0.755	0.675	0.353	0.334	0.230	0.222
	293	1.13	0.975	0.473	0.442	0.217	0.210	0.141	0.138
	400	1.10	0.939	0.469	0.434	0.216	0.209	0.141	0.137
5.0°	600	1.06	0.906	0.459	0.426	0.214	0.207	0.140	0.136
	800	1.02	0.889	0.452	0.422	0.213	0.206	0.139	0.136
	1000	1.00	0.880	0.447	0.420	0.211	0.205	0.139	0.136
10°	293	0.479	0.461	0.219	0.214	0.105	0.103	0.0686	0.0682
	400	0.476	0.454	0.218	0.213	0.104	0.103	0.0686	0.0680
	600	0.471	0.448	0.217	0.212	0.104	0.103	0.0685	0.0679
	800	0.467	0.447	0.216	0.211	0.104	0.103	0.0684	0.0678
	1000	0.462	0.445	0.215	0.211	0.104	0.103	0.0682	0.0679

Таблица 1. Стоковые эффективности МУГН-дислокаций в Fe

ций в системах скольжения $\langle 111 \rangle \{110\}$ и $\langle 111 \rangle \{112\}$, совпадают в пределах расчетной погрешности. Далее приведены результаты только для МУГН из дислокаций $\langle 111 \rangle \{110\}$. Расчетные значения стоковых эффективностей МУГН-дислокаций $\langle 111 \rangle \{110\}$ для СМА (ξ^+) и вакансий (ξ^-) для ОЦК кристаллов Fe, V сведены в табл. 1, 2 соответственно, а рассчитанные по ним значения преференса МУГН ($D = 1 - \xi^- / \xi^+$) — в табл. 3. Значения стоковых эффективностей дислокаций МУГН без учета их упругого взаимодействия с СТД приведены в табл. 4. Из данных табл. 3 видно, что величина D:

1) меняется с температурой в пределах 15-30%;

2) примерно прямо пропорциональна расстоянию между дислокациями в стенке L_y (соответственно, обратно пропорциональна углу разориентировки субзерен Θ);

3) примерно обратно пропорциональна размеру субзерна *L_x*;

4) при прочих равных условиях в разы меньше для V, чем для Fe.

Θ	<i>Т</i> , К	$L_{m} = 150a$		L = 300a		I = 600a		L = 900a	
		$L_{\chi} = 150u$		$L_{\chi} = 500 a$		$L_{\chi} = 000a$		$L_x = 900a$	
		ξ^+	ξ	ξ^+	ξ	ξ^+	ξ	ξ^+	ξ_
1.5°	293	3.90	3.17	1.61	1.46	0.730	0.695	0.470	0.457
	400	3.55	2.85	1.54	1.38	0.712	0.677	0.463	0.447
	600	3.13	2.53	1.45	1.30	0.693	0.656	0.454	0.438
	800	2.87	2.37	1.38	1.25	0.678	0.643	0.448	0.432
	1000	2.68	2.28	1.34	1.22	0.667	0.636	0.443	0.429
	293	1.77	1.65	0.763	0.738	0.354	0.348	0.231	0.228
3.0°	400	1.70	1.57	0.746	0.719	0.351	0.345	0.229	0.227
	600	1.60	1.48	0.727	0.698	0.347	0.340	0.228	0.225
	800	1.54	1.42	0.714	0.686	0.343	0.338	0.226	0.223
	1000	1.49	1.40	0.704	0.681	0.341	0.335	0.225	0.222
	293	0.992	0.957	0.445	0.437	0.211	0.209	0.138	0.137
	400	0.967	0.933	0.440	0.433	0.209	0.208	0.137	0.137
5.0°	600	0.937	0.905	0.433	0.425	0.209	0.207	0.137	0.136
	800	0.918	0.890	0.428	0.423	0.207	0.205	0.136	0.136
	1000	0.904	0.882	0.424	0.421	0.207	0.205	0.136	0.135
	293	0.455	0.452	0.214	0.212	0.103	0.103	0.0681	0.0682
	400	0.451	0.448	0.213	0.212	0.103	0.103	0.0680	0.0680
10°	600	0.447	0.445	0.211	0.211	0.103	0.103	0.0679	0.0679
	800	0.446	0.443	0.211	0.211	0.103	0.103	0.0678	0.0676
	1000	0.444	0.443	0.211	0.210	0.103	0.102	0.0679	0.0678

Таблица 2. Стоковые эффективности МУГН-дислокаций в V

Малые отрицательные значения величины D (|D| < 1%) для МУГН с $\Theta = 10^{\circ}$ в V (табл. 3) обусловлены случайной погрешностью ее определения.

Аналитические выражения для стоковых сил МУГН без учета взаимодействия МУГН с СТД

Стоковая сила двух параллельных плоскостей, ограничивающих материал, записывается как [13]

$$k_0^2 = 12d^{-2} \tag{2}$$

где d — расстояние между поглощающими плоскостями. Тогда для плоских зерен шириной W и толщиной межзеренных границ δ_0 имеем

$$k_0^2 = 12 \frac{1 + f_V}{(W - \delta_0)^2} = \frac{12}{W^2} \frac{1 + \delta_0 W^{-1}}{(1 - \delta_0 W^{-1})^2},$$
 (3)

где $f_V = \delta_0 W^{-1}$ — объемная доля стоков в кристалле. Множитель в числителе $(1 + f_V)$ возникает из-за учета

ρ	<i>т</i> , к	$L_x = 150a$		$L_x = 300a$		$L_x = 600a$		$L_x = 900a$	
		Fe	V	Fe	V	Fe	V	Fe	V
1.5°	293	49.8	18.8	28.0	9.2	14.9	4.8	9.8	2.8
	400	47.2	19.7	26.8	10.1	14.3	4.8	9.8	3.4
	600	42.7	19.2	24.7	10.3	13.3	5.4	9.1	3.6
	800	38.2	17.3	22.1	9.4	11.8	5.2	8.1	3.6
	1000	34.3	15.0	20.0	8.6	10.9	4.6	7.1	3.1
	293	26.5	6.8	13.1	3.4	6.6	1.7	4.2	1.2
	400	26.0	7.5	13.4	3.7	7.0	1.7	4.5	1.2
3.0°	600	24.5	7.8	12.5	4.0	6.2	1.9	4.4	1.3
	800	22.0	7.4	11.6	4.0	5.8	1.6	4.1	1.1
	1000	19.9	6.4	10.6	3.2	5.3	1.6	3.6	1.1
	293	13.8	3.6	6.6	1.7	3.2	0.9	2.4	0.4
	400	14.7	3.5	7.3	1.5	3.3	0.6	2.8	0.2
5.0°	600	14.4	3.4	7.3	1.7	3.5	0.9	2.5	0.7
	800	13.1	3.1	6.8	1.3	3.4	0.7	2.4	0.4
	1000	12.1	2.5	6.0	0.8	2.8	0.9	2.1	0.4
10°	293	3.8	0.7	2.0	0.7	1.2	0.0	0.6	-0.1
	400	4.6	0.6	2.1	0.5	1.0	0.0	0.8	0.0
	600	4.9	0.4	2.0	0.3	1.3	-0.2	0.9	0.0
	800	4.3	0.5	2.3	0.1	0.6	0.0	0.9	0.3
	1000	3.8	0.2	2.1	0.3	0.9	0.5	0.4	0.1

Таблица З. Преференс МУГН (в %) в Fe и V

того, что СТД генерируются, в том числе, внутри границы зерна. Сопоставление формулы (3) с ОКМКрасчетами для такой конфигурации стоков (рис. 2) показало их полное согласие в пределах точности ОКМКрасчетов (погрешность менее 0.1% при доверительной вероятности 99%) при W = 150a и $\delta_0 = 6a$.

Если граница состоит из поглощающих цилиндров радиусом r_0 (рис. 1), расстояние между которыми $L_y \leq 2r_0$, то

$$k_0^2 \approx 12 \, \frac{1+f_V}{(L_x - \overline{\delta}_0)^2} = \frac{12}{L_x^2} \, \frac{1 - \overline{\delta}_0 L_x^{-1}}{(1 - \overline{\delta}_0 L_x^{-1})^2},\tag{4}$$

где $\overline{\delta}_0$ — средняя ширина границы,

$$\overline{\delta}_0 = r_0 \Big(\sqrt{1 - \varepsilon^2} + \varepsilon^{-1} \arcsin \varepsilon \Big), \quad \varepsilon = L_y / 2r_0.$$
 (5)

При $\varepsilon = 0$ соотношение (4) переходит в (3) с $\delta_0 = 2r_0$. При $\varepsilon = 1$ ($L_y = 2r_0$), $\overline{\delta}_0 = \pi r_0/2$.

Далее для удобства перейдем от выражений для k_0^2 к выражениям для ξ_0 ($\xi_0 = k_0^2 L_x L_y$). Поскольку при рассматриваемых диапазонах значений параметров задачи

Рис. 2. Схематическое изображение ОКМК-модели для расчета стоковой силы плоских межзеренных границ шириной δ_0 , разделяющих зерна шириной *W*. Прямоугольник — расчетная ячейка. Все, что вне расчетной ячейки — изображение, создаваемое ПГУ.

 $\overline{\delta}_0 \ll L_x$, соотношение (4) можно упростить

$$\xi_0 \approx 12 L_y L_x^{-1} (1 + 3\overline{\delta}_0 L_x^{-1}).$$
 (6)

Сравнение расчетов по формуле (6) и ОКМК-расчетов для конфигурации стоков, изображенной на рис. 1, с $L_y = 5a$ и $r_0 = 3a$, показало их хорошее согласие (рассогласование менее 0.2%).

При $\varepsilon > 1$ ($L_y > 2r_0$), значение $\overline{\delta}_0$ становится комплексным. В этом случае получить аппроксимирующее аналитическое выражение для случая можно путем выбора такой аналитической формы, которая бы при стремлении L_y к $2r_0$ переходила бы в выражение (6), а при стремлении L_y к L_x — в известное выражение для равномерно распределенных в пространстве поглощающих цилиндров [14]:

$$\xi_0 = 2\pi (\ln \rho^{-1} - 3/4)^{-1}, \tag{7}$$

где $\rho = \sqrt{\pi}r_0/L$, $L = L_x = L_y$. Следующее выражение обладает требуемыми свойствами:

$$\xi_0^{\pm}(L_x, L_y, r_0) = 12 \frac{L_y}{L_x} \times \left(1 + \frac{6}{\pi} \frac{L_y}{L_x} \left(\ln \frac{L_y}{\sqrt{\pi}r_0} - \frac{3}{4} - \frac{\pi}{6} + \frac{c^{\pm}}{r_0} \right) \right)^{-1}, \quad (8)$$

в которое для дополнительного повышения точности описания расчетных данных добавлен член c^{\pm}/r_0 , где индексы "+" и "–" используются для СМА и вакансий соответственно, $c^+ = 0.37a$, $c^- = 0.32a$. Выражение (8) описывает ОКМК-данные табл. 4 с точностью не хуже 0.6%.

5. Аналитические выражения для стоковых сил МУГН с учетом взаимодействия МУГН с СТД

Стоковая сила плоской границы (рис. 2), не взаимодействующей с СТД, имеет вид (3), где δ_0 — толщина

Θ	<i>Т</i> , К	$L_x = 150a$		$L_x = 300a$		$L_x = 600a$		$L_x = 900a$	
		ξ_0^+	ξ_0^-	ξ_0^+	ξ ⁻ ξ0	ξ_0^+	ξ_0^-	ξ_0^+	ξ_0^-
0.75°	1	_	_	1.233	1.245	_	_	_	_
	2	_	—	1.497	1.503	—	—	—	—
	3	2.470	2.476	1.682	1.687	1.028	1.030	0.740	0.740
	6	_	-	2.100	2.101	-	-	-	-
	10	_	_	2.542	2.546	—	-	—	-
	1	1.428	1.444	0.926	0.933	0.545	0.547	0.385	0.387
	2	—	—	1.068	1.070	—	—	—	—
1.5°	3	2.063	2.071	1.158	1.160	0.617	0.619	0.421	0.421
	6	_	-	1.342	1.343	-	-	-	-
	10	_	_	1.516	1.517	—	-	—	-
	1	_	_	0.579	0.581	—	_	-	-
2 00	2	—	—	0.631	0.632	—	—	—	—
5.0	3	1.327	1.327	0.663	0.663	0.331	0.331	0.2205	0.2205
	6	_	-	0.722	0.722	-	-	-	-
	1	_	_	0.380	0.381	-	-	-	-
5.0°	2	_	_	0.402	0.402	—	-	—	-
	3	0.860	0.858	0.414	0.415	0.2036	0.2040	0.1348	0.1349
	1	—	—	0.1990	0.1994	_	_	_	_
10°	2	-	-	0.2054	0.2055	-	-	-	-
	3	0.441	0.441	0.2101	0.2099	0.1023	0.1026	0.0678	0.0678

Таблица 4. Стоковые эффективности МУГН-дислокаций без учета взаимодействий между СТД и МУГН в ОЦК-кристалле

границы. Если поглощающая поверхность представляет собой не плоскость, а набор цилиндрических поверхностей (рис. 1), определим эффективную толщину МУГН δ_0^{\pm} как

$$\delta_0^{\pm} = L_x - \left(12L_x L_y (1+f_V)/\xi_0^{\pm}\right)^{1/2},\tag{9}$$

где ξ_0^{\pm} — либо значения, которые берутся из табл. 4, либо рассчитываются по (8).

Аналогично (9), для взаимодействующих МУГН определим

$$\delta^{\pm} = L_x - \left(12L_x L_y (1+f_V)/\xi^{\pm}\right)^{1/2}.$$
 (10)

Тогда эффект взаимодействия МУГН с СТД можно характеризовать величиной увеличения эффективной толщины границы при учете этого взаимодействия:

$$\xi^{\pm} = \delta^{\pm} - \delta_0^{\pm} = \sqrt{12L_x L_y (1+f_V)} \left(\frac{1}{\sqrt{\xi_0^{\pm}}} - \frac{1}{\sqrt{\xi^{\pm}}}\right).$$
(11)

Величины ξ^{\pm} , полученные с помощью (11) и ОКМКданных из табл. 1, 2 и 4, хорошо описываются аппроксимирующей аналитической зависимостью

$$\xi^{\pm}(L_x, L_y, T) = (L_y + p^{\pm}) \left(1 - \frac{L_y}{2L_x} \right) \\ \times \left(\frac{q^{\pm}}{L_y} - s^{\pm} \ln \frac{T}{T_1^{\pm}} + \frac{T}{T_2^{\pm}} \right), \quad (12)$$

где $p^{\pm}, q^{\pm}, s^{\pm}, T_1^{\pm}, T_2^{\pm}$ — параметры, сведенные в табл. 5.

Таким образом, из (10), (11) и с учетом, что $f_V = \pi r_0^2/(L_x L_y)$, для величины ξ^{\pm} следует аналитическое выражение

$$\xi^{\pm}(L_x, L_y, T) = 12 \frac{L_x L_y + \pi r_0^2}{\left(L_x - \xi^{\pm}(L_x, L_y, T) - \delta_0^{\pm}(L_x, L_y, r_0)\right)^2},$$
(13)

в котором $\delta_0^{\pm}(L_x, L_y, r_0)$ определяется выражением (9), $\xi^{\pm}(L_x, L_y, T)$ — выражением (12), $r_0 = 3a$. Аналитически рассчитанные величины ξ^{\pm} согласуются с ОКМКданными (табл. 1, 2) в пределах 1%. В качестве примера,

Рис. 3. Температурные зависимости стоковых эффективностей МУГН-дислокаций для СМА ξ^+ в Fe при расстояниях между соседними МУГН $L_x = 150a$. Темные и светлые символы — ОКМК-данные с учетом и без учета взаимодействия между МУГН и СТД соответственно. Сплошные и штриховые линии — расчет с помощью (13) и (8) соответственно.

на рис. 3 представлены результаты ОКМК-расчетов и аналитических расчетов ξ^+ с использованием соотношения (13) при $L_x = 150a$ для Fe.

Аналитическое выражение для преференса МУГН, следуя его определению (п. 3) и (13), записывается как

$$D(L_x, L_y, T) = 1 - \frac{\xi^-(L_x, L_y, T)}{\xi^+(L_x, L_y, T)}$$

= $1 - \left(\frac{L_x - \xi^+(L_x, L_y, T) - \delta_0^+(L_x, L_y, r_0)}{L_x - \xi^-(L_x, L_y, T) - \delta_0^-(L_x, L_y, r_0)}\right)^2$. (14)

Выражение (14) хорошо описывает ОКМК-данные (табл. 3) при всех рассмотренных комбинациях парамет-

Таблица 5. Значения параметров (12) для ОЦК-металлов Fe и V

Пополютти		Fe	V			
параметры	CMA (+)	Вакансия (-)	CMA (+)	Вакансия (-)		
p^{\pm}, a	-2.747	1.359	-3.304	-3.380		
s^{\pm}	0.9479	0.9833	0.7835	1.141		
T_1^{\pm} , K	3984	538.4	3197	731.8		
T_2^{\pm} , K	∞	1297	∞	1526		
q^{\pm}, a	1.896	0	-3.369	0		

ров L_x , L_y , T. На рис. 4 для примера приведено сравнение ОКМК-данных с аналитическим выражением (14) при $L_x = 150a$.

В исследуемых диапазонах параметров $\delta_0^+ \approx \delta_0^$ и $L_x \gg \delta^-$. Поэтому выражение (14) можно упростить

$$D(L_x, L_y, T) \approx \frac{\Delta \xi(L_x, L_y, T)}{L_x} \left(2 - \frac{\Delta \xi(L_x, L_y, T)}{L_x}\right),$$
(15)

где

$$\Delta\xi(L_x,L_y,T)=\xi^+(L_x,L_y,T)-\xi^-(L_x,L_y,T),$$

 $\xi^{\pm}(L_x, L_y, T)$ определяются (12).

6. Обсуждение

Рассмотрим причину сильного различия значений преференса МУГН в Fe и V (табл. 3, рис. 4). Для этого в качестве величины, характеризующей взаимодействие между МУГН и СТД, возьмем максимальную разность между энергиями миграции СТД в различных направлениях ΔE . Если СТД захватывается МУГН, когда ΔE превышает некоторую величину Q, то разность расстояний $\Delta x_Q = x_Q^+ - x_Q^-$, при которых $\Delta E^\pm = Q$ для СМА (+)и вакансий (-), будет соответствовать по физическому смыслу величине $\Delta \xi$, и, как следствие (15), $\Delta x_Q \sim D$. Величина ΔE уменьшается с ростом x практически экспоненциально при x > h, причем показатель экспоненты по абсолютной величине в кристалле V почти в два раза больше, чем в кристалле Fe, из-за большего отклонения величины показателя упругой анизотропии $A = 2c_{44}/(c_{11} - c_{12})$ в Fe от единицы (A = 2.3 для Fe, A = 0.81 для V, A = 1 в изотропном случае) [7]. Отношение величин $\Delta E^+(x)/\Delta E^-(x) \approx 3$ для x > h как для Fe, так и для V. Однако вследствие разных показателей экспоненты для Fe и V разность расстояний существенно различается (в разы). Например, для Q = 0.001 eV, величины Δx_O для МУГН с h = 30a ($\Theta = 1.65^\circ$) равны 11.2а и 4.5а для Fe и V соответственно (рис. 5), их отношение составляет ~ 2.5 раза. Для других МУГН, рассмотренных в настоящей работе, величина этого соотношения примерно сохраняется, что согласуется с аналогичным отношением для величин преференса данной МУГН в Fe и V (рис. 4). Таким образом, сильная упругая анизотропия Fe приводит к тому, что значения преференса рассмотренных МУГН-дислокаций в 2-4 раза превышают значения аналогичных величин для V.

Высокие значения дислокационного преференса способствуют зарождению и развитию пористости в металлах. Таким образом, полигонизация зерен, в результате которой краевые дислокации собираются в малоугловые границы наклона, существенно (в разы) уменьшает их преференс, что способствует увеличению устойчивости микроструктуры материала к радиационному воздействию. Соответствующими термомеханическими обработками возможно сформировать полигональную структуру [15,16].

Рис. 4. Температурные зависимости преференса МУГН D в Fe (a) и V (b) при расстояниях между соседними МУГН $L_x = 150a$. Символы — ОКМК-данные. Сплошные линии — расчет с помощью (14).

Рис. 5. Зависимость максимальной разности между энергиями миграции СТД в различных направлениях ΔE от расстояния x до МУГН (111){110} с периодом h = 30a ($\Theta = 1.65^{\circ}$) в Fe (кривые I) и V (кривые 2). Сплошные кривые — для СМА, штриховые — для вакансий.

7. Заключение

1. Для малоугловых границ наклона (МУГН), образованными дислокационными стенками из прямолинейных краевых дислокаций в системах скольжения $\langle 111 \rangle \{110\}$ и $\langle 111 \rangle \{112\}$, в ОЦК металлах Fe и V объектным ки-

нетическим методом Монте-Карло рассчитаны стоковые силы и преференсы для собственных точечных дефектов:

 а) стоковые силы в пределах расчетной точности не зависят от системы скольжения дислокаций, образующих МУГН;

б) преференс меняется с температурой в пределах 15-30% в диапазоне 293-1000 К;

 в) преференс обратно пропорционален углу разориентировки субзерен и размеру субзерна;

г) преференс МУГН существенно (в разы) меньше для V, чем для Fe (обусловлено более сильной упругой анизотропией Fe по сравнению с V).

2. Получены аппроксимирующие аналитические выражения для стоковых сил и преференсов МУГН в ОЦК металлах Fe и V.

3. МУГН обладают значительно меньшим преференсом, чем равномерно распределенные по объему дислокации. Формирование МУГН в металлах (полигонизация) увеличивает их радиационную стойкость.

Финансирование работы

Работа проведена в рамках выполнения государственного задания Национальным исследовательским центром "Курчатовский институт" с использованием оборудования центра коллективного пользования "Комплекс моделирования и обработки данных исследовательских установок мега-класса" НИЦ "Курчатовский институт", http://ckp.nrcki.ru.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Elastic strain fields and dislocation mobility / Eds V.L. Indenbom, J. Lothe. Elsevier Science, North-Holland, Amsterdam (1992). 793 p.
- [2] Дж. Хирт, И. Лоте. Теория дислокаций. Атомиздат, М. (1972). 600 с.
- [3] R.W. Siegel, S.M. Chang, R.W. Balluffi. Acta Metall 28, 3, 249 (1980). https://doi.org/10.1016/0001-6160(80)90159-5
- [4] A.H. King, D.A. Smiths. Rad. Eff. **54**, *3–4*, 169 (1981). https://doi.org/10.1080/00337578108210044
- [5] R.R. Galimov, S.B. Goryachev. Phys. Status Solidi B 153, 2, 443 (1989). https://doi.org/10.1002/pssb.2221530204
- [6] C. Jiang, N. Swaminathan, J. Deng, D. Morgan, I. Szlufarska. Mater. Res. Lett. 2, 2, 100 (2014). https://doi.org/10.1080/21663831.2013.871588
- [7] А.Б. Сивак, П.А. Сивак, В.А. Романов, В.М. Чернов. ВАНТ. Сер. Термоядерный синтез 38, 2, 43–50 (2015). http://vant.iterru.ru/vant 2015 2/5.pdf
- [8] А.Б. Сивак, В.А. Романов, В.М. Чернов. Кристаллография 55, *1*, 102 (2010). https://elibrary.ru/item.asp?id=13044310
- [9] A.B. Sivak, V.M. Chernov, V.A. Romanov, P.A. Sivak. J. Nucl. Mater. 417, 1–3, 1067 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.176
- [10] А.Б. Сивак, П.А. Сивак, В.А. Романов, В.М. Чернов. Перспектив. материалы **10**, 5 (2014). https://elibrary.ru/item.asp?id=22027294
- [11] J.A. Rayne, B.S. Chandrasekhar. Phys. Rev. **122**, *6*, 1714 (1961). https://doi.org/10.1103/PhysRev.122.1714
- [12] D.I. Bolef, R.E. Smith, J.G. Miller. Phys. Rev. B 3, 12–15, 4100 (1971). https://doi.org/10.1103/PhysRevB.3.4100
- [13] S.I. Golubov, A.V. Barashev, R.E. Stoller. In: Comprehensive Nuclear Materials / Eds R.J.M. Konings, R.E. Stoller. 2 Ed. Elsevier, Amsterdam (2020). V. 1. P. 717. https://doi.org/10.1016/B978-0-12-803581-8.00663-9
- [14] F.A. Nichols. J. Nucl. Mater. **75**, *1*, 32 (1978). https://doi.org/10.1016/0022-3115(78)90026-0
- [15] Т.Н. Вершинина, Ю.Р. Колобов, М.В. Леонтьева-Смирнова. Изв. вузов. Черная металлургия 55, 8, 57 (2012). https://elibrary.ru/item.asp?id=19111901
- [16] T. Vershinina, M. Leont'eva-Smirnova. Mater. Characterization 125, 23 (2017). https://doi.org/10.1016/j.matchar.2017.01.018

Редактор Т.Н. Василевская