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Creep of vortices and magnetic flux percolation in high-temperature

superconducting composites
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The effect of magnetic flux percolation on the creep resistance in superconducting composites containing normal-

phase fractal clusters has been studied. An exact solution has been obtained for the voltage induced by the

magnetic flux creep taking into account both forward and backward vortex hopping. It has been found that the

Anderson−Kim creep resistance in a percolative superconductor exceeds the collective creep resistance at an

equivalent height of the pinning barrier.
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High critical currents can be achieved in supercon-

ductors by creating artificial pinning centers [1] whose

role is played by various defects, including normal-

phase clusters [2]. An example of superconduct-

ing composites containing normal-phase inclusions are

1G-wires based on high-temperature superconductors

(HTSC) [3] fabricated using the OPIT (oxide pow-

der in tube) technique, as well as 2G-wires fabri-

cated using technique IBAD (ion beam assisted deposi-

tion) [4] and RABiTS (rolling-assisted biaxially textured

substrates) [5].

HTSCs are type II superconductors having a high

Ginzburg−Landau parameter because the depth of mag-

netic field penetration into them significantly exceeds the

coherence length. Magnetic field initiates in such supercon-

ductors topological perturbations of the order parameter,

namely vortices transporting the magnetic flux. In this

paper, we consider a creep of vortices induced in the

self-field mode. The magnetic flux motion caused by the

creep of vortices results in the critical current dissipation and

decrease. The problem of creep suppression is especially

important for HTSCs because of high level of thermal

fluctuations [6].

Superconducting composites are heterogeneous in struc-

ture; hence, they may exhibit percolation effects: super-

current percolation through a superconducting cluster and

magnetic flux percolation through a normal-phase cluster

(Fig. 1). In the 2D case, the supercurrent and magnetic

flux percolations exclude each other (Fig. 1, a); therefore,
to prevent the magnetic flux transfer, it is sufficient to

ensure an exceedance of the percolation threshold for

the superconducting phase fraction: θ > θc . In the case

of the 3D percolation, there exists a range of values

of the superconducting phase fraction θc < θ < 1− θc

where percolation clusters of the superconducting and

normal phases coexist (Fig. 1, b). In this case, the

magnetic flux motion can be blocked if the superconducting

percolation cluster is dense enough to satisfy condition

θ > 1− θc .

Here we consider a superconductor having inside it

a superconducting percolation cluster that supports the

transport current. Its cells contain normal-phase clusters

capturing the magnetic flux. Vortices can move along

weak links between the normal-phase clusters. Small

coherence length promotes formation of weak links in

HTSC [6]. Depending on their configuration, each

normal-phase cluster has its own critical depinning cur-

rent.

In work [2] it was revealed for the first time that

normal-phase clusters with fractal boundaries affect the

critical current and transport of vortices. The fractal cluster

perimeter L and area A obey similarity relation

L1/D ∝ A1/2,

where D is the fractal dimensionality of the cluster

boundaries [7]. Depinning of vortices via weak links

randomly arranged along the fractal boundary gets re-

duced to the random walks problem for a boundary

with discrete absorption points [8] and is described

by depinning probability F(i) = exp(−Ci−2/D) equal to

probability F(i) = Pr{∀i j < i} of that critical current

i j of the j-cluster does not exceed threshold value

i , where i ≡ I/Ic is the electric current normalized

to the resistive junction current Ic ≡ α(CĀ)−D/2, α is

the normal-phase cluster form-factor, Ā is the average

cluster area, constant C ≡
(

(2 + D)/2
)2/D+1

is deter-

mined by fractal dimensionality D of the cluster bound-

aries.

The number of vortices transporting the magnetic flux

due to creeping is characterized by pinning probability

W = 1− F whose dependence on the transport current
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Figure 1. Isotropic percolation of the magnetic flux and

superconducting current in the 2D (a) and 3D (b) composite

superconductors. Psc and Pn are the densities of percolation

clusters of the superconducting and normal phases, respectively,

θ is the superconducting phase fraction, and θc is the percolation

threshold.

is presented in Fig. 2. One can see that the pin-

ning probability increases with increasing fractal dimen-

sionality. If all pinning centers possess equal criti-

cal current ic , then, when transport current i is pass-

ing, the creep induces on the superconductor voltage

v f c(i, ic). When the pinning barrier is linearly bi-

ased by transport current U(i) ∝ (1− i/ic) typical of the
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Figure 2. Probability of pinning on normal-phase clusters

of different fractal dimensionalities versus the transport current.

Value D = 1 corresponds to the limiting case of Euclidean

clusters, D = 2 corresponds to clusters of the maximum fractal

dimensionality, D = 1.5 is the intermediate value of the cluster

boundary fractal dimensionality typical of the experimentally

observed situation (analysis of electron micrographs of YBCO

films gave D = 1.44± 0.02 [2]).

Anderson−Kim creep (AKC), this voltage has the following

form provided both the direct and reverse (relative to

the Lorentz driving force) vortex hops are taken into

account:

v f c(i, ic)=R f c
ic

2u

(

1−exp

(

−2u
i
ic

)

)

exp

(

u

(

i
ic
−1

)

)

,

(1)
Here u ≡ U0/kT is the amplitude of the pinning barrier

not biased by the transport current, R f c is the creep

resistance.

In the general case, the creep-induced voltage may be

defined as an integral response to the transport current

in the form of convolution of the depinning currents

distribution f (ic) = dF(ic)/dic with kernel (1):

V f c =

∞
∫

i

v f c(i, ic) f (ic)dic = R f c
C
2u

e−u

×
i−2/D
∫

0

x−D/2
(

1− exp(−2uixD/2)
)

exp
(

uixD/2 −Cx
)

dx .

(2)

The magnetic flux transport by creeping begins at low

(relative to the resistive junction current) transport currents.

When i ≪ 1, in the case of Euclidean clusters (D = 1),
expression (2) for the voltage at the sample takes the

Technical Physics Letters, 2024, Vol. 50, No. 5



Creep of vortices and magnetic flux percolation in high-temperature... 39

u

0.2

0

1 10 210

0.4

1

3

0.6

0.8

1.2

R
/R

(i
 =

 1
)

fc

–110–210–310

1.0

1 – R  (CC)dc

 D = 1.5

2 – R  (AKC)dc

3 – R  (CC)ac

4 – R  (AKC)ac

2

4

u

0.2

0.6

20 4

0.4

6 8
0

D
R

/R
fc

1

2

1 – dc

2 – ac

Figure 3. Resistances of the Anderson−Kim creep and collective

creep in the resistive junction region for fractal dimensionality

D = 1.5. The main panel presents the dependences of static

resistance Rdc/R f c (1, 2) and differential resistance Rac/R f c (3, 4)
on the height of unbiased pinning barrier u ≡ U0/kT for CC

(1, 3) and AKC (2, 4). The inset demonstrates the ex-

ceedance of the static (1) and differential (2) resistances of

the Anderson−Kim creep over those of the collective creep:

1R/R f c =
(

R(AKC) − R(CC)
)

/R f c .

following form:

V f c = R f ce−ui

(

1 +
ui
β
exp

(

(ui
β

)2
)

×
(√

π + 2
ui
β

1F1

(

1

2
;
3

2
;−
(

ui
β

)2))
)

,

where β = 3(3/2)1/2 , 1F1(a ; b; z ) is the Kummer degen-

erate hypergeometric function; accordingly, voltage for

clusters of maximum fractal dimensionality (D = 2) is

V f c = 4R f c exp(−2/i − u/2)0F1

(

; 3/2; (1/i − u/2)2
)

,

where 0F1(; b; z ) is the generalized hypergeometric function.

For the collective creep (CC) with a transport-

current-induced hyperbolic bias of the pinning barrier

U(i) ∝ (ic/i)µ , where µ = 2/D is the glassiness index, the

creep voltage for critical current ic is

v f c(i, ic) = R f c
ic

2u

(

1− exp

(

−2u
i
ic

)

)

× exp

(

−u

((

ic

i

)µ

− 1

)

)

,

which allows defining the total voltage at the sample as

V f c = R f c
C
2u

eu

i−µ
∫

0

x−1/µ
(

1− exp(−2uix1/µ)
)

× exp

(

− u
iµx

−Cx

)

dx . (3)

In the limit of low currents, expression (3) takes the form

of

V f c = 2R f c

√
Cueui1−

µ

2 K1

(

2

√

Cu
iµ

)

,

where K1(z ) is the Macdonald function.

Figure 3 presents the dependences of static (Rdc = V f c/i ,
curves 1, 2) and differential (Rac = dV f c/di , curves 3, 4

/) creep resistances on the pinning barrier height in the

region of resistive junction (i = 1). Apparently, the

AKC resistance at the equivalent pinning barrier height

exceeds the CC resistance up to almost complete creep

suppression at u > 20. The Fig. 3 inset demonstrates

the exceedance of AKC resistance over that in the CC

mode: 1R/R f c =
(

R(AKC) − R(CC)
)

/R f c . This result

seems unexpected, since individual pinning causing AKC is

typically stronger than the collective one [1], which would

lead to a decrease in the vortex mobility and in resistance.

The source of this effect may be as follows. In percolation

superconductors there is no vortex lattice in the strict sense

of translational symmetry; instead of it there are only

scattered fragments of a distorted, defective and partially

amorphized lattice. Fractal normal-phase clusters are centers

of frozen disorder and contribute to amorphization of the

vortex lattice. This promotes formation of the vortex

structure correlation regions whose capturing in the case

of collective pinning reduces the vortex system energy

without increasing its elastic energy. Therefore, mobility of

collective-creep vortices decreases, thus making the creep

resistance lower than that of the Anderson−Kim creep.

Fig. 3 also shows that differential resistance of the

Anderson−Kim creep exceeds the static one IFX57XE

at the pinning barrier height IFX58XE which coin-

cides in the order of magnitude with the latent melt-

ing heat of the vortex lattice per vortex (IFX59XE for

YBAIFX60XECUIFX61XEO Runx62xe (YBCO) [9]). The
exceedance of static differential resistance over the static

one stems from the pinning potential asymmetry caused

by a constant subcritical bias current. When U0 < 0.5kT ,
thermal excitation energy dominates over the pinning

energy and, moreover, over the asymmetric component of

the pinning potential, and the creep resistance ratio gets

reversed: Rac < Rdc . In the case of collective creep, this

limiting value of the pinning barrier height shifts towards

lower energies: Rac > Rdc at U0 > 0.01kT . This stems

from the fact that in collective pinning not a single vortex

is captured but vortex bundles within the vortex-structure

correlation volume. Therefore, instead of being distributed
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over a single vortex, energy is distributed over the entire

correlation region.

The use of normal-phase fractal clusters as pinning

centers provides an extra opportunity to increase the critical

current, since inhomogeneities of such fractal-dimensional

objects cover a wide range of geometric sizes (up to the

vortex core diameter), which ensures efficient pinning. The

current-carrying capacity may be enhanced by creating a

pinning landscape that provides simultaneous suppression of

creeps in the AKC and CC modes. AKC may be suppressed

by using correlated defects like clusters of columnar defects;

to suppress CC, there may be used randomly arranged parti-

cle tracks emerging under ion bombardment which enables

formation of different-dimensional defects with controllable

density and morphology [10]. For creating such a combined

pinning landscape, promising is technique PLD (pulsed
laser deposition) [11], as well as MOCVD (metal-organic

chemical vapor deposition) [12] in combination with ion

bombardment [13].
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