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The paper proposes an extension of the method of cross-correlation analysis of the dynamics of systems with

time-varying characteristics, which implies accounting for differences in characteristics of individual segments. The

extended method was tested on the example of two-channel recordings of signals of electrical activity of the brain

in different functional states.
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Existence of cross-correlations is typical of the dynamics

of complex systems containing components with different

types of links [1,2]. Their quantitative description based on

recorded signals allows characterizing specific features of

such systems’ dynamics and reaviling variations associated

with enhancement or reduction of interactions. For this

purpose, calculation of the cross-correlation function is

typically used, but its estimation needs assuming the

dynamics to be stationary. If this assumption is incorrect,

it is necessary to transform the processes under analysis to

stationary ones through various techniques at the stage of

data preprocessing, to use special methods implying elimi-

nation of low-frequency variations (trend) in the process of

calculation, or to apply these two options simultaneously;

the latter is, as a rule, preferable.

At present various methods of cross-correlation analysis

of the dynamics of systems with time-varying characteristics

are used [3–5]. Among them we can distinguish the DCCA

(detrended cross-correlation analysis) method [6,7] which

is the fluctuation analysis, namely the DFA (detrended
fluctuation analysis) method [8,9], generalized for the case

of two simultaneously recorded signals. Works [10,11]
proposed to supplement the DFA method with statistical

analysis of the signal profile standard deviations from the

trend for different segments in order to take into account

time variations in characteristics of non-stationary behavior.

The proposed modification differs from the conventional

approach in that it involves calculation of an extra scaling

exponent describing specific features of nonstationarity [12].
Let us discuss the possibility of applying a similar idea to

the DCCA method.

In accordance with the calculation algorithm [6], cross-
correlation analysis of two time series x i and x̃ i ,

i = 1, . . . , N implies construction of their profiles

y k =

k∑

i=1

x i , ỹ k =

k∑

i=1

x̃ i , k = 1, . . . , N. (1)

Each profile is divided into M = [(N − n)/1] + 1 overlap-

ping (in the general case) segments n in length (with

overlapping by 1 counts); within individual segments, linear

approximation of local trends z k and z̃ k is performed. Cross-

correlations of detrended signal profiles are first assessed for

each segment j = 1, . . . , M :

f 2
DCCA(n, j) =

1

n

( j−1)1+n∑

k=1+( j−1)1

(y k − z k)(ỹ k − z̃ k), (2)

and then are averaged over all the segments:

F2
DCCA(n) =

1

M

M∑

j=1

f 2
DCCA(n, j). (3)

When long-range correlations of signals x i and x̃ i take

place, the existence of a power-law dependence in the

following form is expected:

FDCCA(n) ∼ nλ. (4)

The general idea of the extended DCCA method is to

take into account the differences between cross-correlations

of individual segments (2), which may be significant in non-

stationary processes. For instance, paper [11] describes

the cases when some segments make a predominant

contribution, while the effect of other ones appears to be

small. The DCCA method does not account for the signal

structure heterogeneity causing significant distribution of

f DCCA values versus j . Let us consider, along with the

mean value of FDCCA, standard deviation σ of the f DCCA

values as a function of the segment length n. In the case of

the power-law dependence

σ [ f DCCA](n) ∼ nµ (5)

scalin exponent µ reflects information on specific features of

nonstationarity in the dynamics of the system under study.
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Figure 1. Anesthesia-induced variations in scalin exponents in the conventional (λ) and extended (µ) DCCA methods calculated from two-

channel electrocorticography signals for a typical recording. The inset demonstrates characteristic double-logarithmic-scale dependences

(4) before (1) and after (2) anesthesia.

To test the extended DCCA method on non-stationary

processes of a complex structure, take as an example two-

channel electrical activity recordings (electrocorticograms)

of mice brains in two different states: before and after

administration of anesthesia in the dose recommended for

surgery. Signals were recorded from the left and right

hemispheres by using implanted electrodes. Anesthesia-

induced variations in electrical activity cause changes in the

scaling exponents in both the conventional and extended

DCCA methods (Fig. 1). An increase in λ and µ oc-

curs immediately after the anesthesia administration; upon

completion of the transient process, the scaling exponents

get stabilized at values higher than in the awake state.

Double-logarithmic-scale dependences (4) for the signals

10min prior to and 10min after anesthesia administration

are shown in the inset to Fig. 1. Dependences (5)

look similar. Scaling exponents were calculated in the

2.0 6 lg n 6 3.2 range where differences in the slopes of

double-logarithmic-scale dependences (4) and (5) are most

pronounced. At the same time, a nonlinear character

of these dependences should be noticed, which provides

differences in local exponents. Thereat, the conventional

DCCA method reveals the most pronounced differences

in the vicinity of lg n = 2.5, while the extended method

manifests them in the vicinity of lg n = 2.0 and at lg n > 3.0.

This emphasizes that the approaches being applied focus on

various distinctive features of the analyzed signals’ structure

and can complement each other in diagnostic being applied

and, hence, reveal differences in experimental data over a

wide range of scales.

Let us now turn to the results of statistical analysis

for a group of laboratory animals, including eight mice.

Figure 2 presents in the double logarithmic scale group-

averaged dependences (4) and (5) for electrocorticograms

recorded 10min before (curve 1) and 10min after (curve 2)

anesthesia administration. Such dependences in the DCCA

method are similar to those presented in the inset to Fig. 1.

Visual consideration allows revealing differences in the

slopes in the range of high lg n (Fig. 2, a). In the extended

method, the differences in slopes are visually less noticeable

(Fig. 2, b) and can be revealed only by calculations. At

the same time, one can notice that anesthesia causes a

shift of the dependences themselves, which can serve as

an additional diagnostic criterion. Estimates of local slopes

of averaged dependences obtained in the window on the

lg n axis 0.6 long allowed revealing maximal differences

in the vicinity of lg n = 2.7 in the DCCA method and in

the vicinity of lg n = 1.9 in the extended method. This

confirms the conclusions made for a typical record (Fig. 1)

about complementarity of the two approaches and the fact

that the extended DCCA method better reveals variations

in the signal structure. In this work, electrocorticogram

signals were selected as a challenging example for testing

the extended method applicable to processes of various

natures in the dynamics of systems with time-varying

characteristics.
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Figure 2. Double-logarithmic-scale dependences FDCCA(n) (a)
and σ [ f DCCA](n) (b) averaged over a group of mice. Mean values

and standard deviations are indicated.

The paper does not contain information on any studies

involving laboratory animals.
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