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Electric pulse area in a layer of a medium with electric conductivity
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An analysis of the transmission and reflection of an extremely short electromagnetic pulse in a layer of a linear

medium with electric conductivity has been carried out. It is shown that taking into account the transition boundary

layers of the sample does not change the results of considering a problem with sharp boundaries. The conclusions

are radically different from those obtained in the unidirectional propagation approximation.
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Introduction

In connection with the progress in obtaining increasingly

shorter laser pulses and the need to reject some approxima-

tions that are common in the optics of multicycle radiation,

such as the approximation of slowly-varying envelope [1],
the issue of developing new approaches to the theoretical

description of the maximally short pulses propagation has

become relevant. Currently the so called approximation

of unidirectional propagation is being widely used [2].
The paper [3] shows that within this approximation the

value that is important for the maximally short pulses —
electric area of the pulse — is not preserved in the

linear media with non-zero conductivity exemplified by

plasma. In [4] it is specified that this conclusion is

caused specifically by the approximated nature of the

unidirectional propagation approach, while within the strict

Maxwell equations or the wave equation following from

those the electric area will be maintained in those media as

well.

A wider selection of the theoretically used approximated

approaches for extremely short pulses is analyzed in [5] in
respect to the electric area conservation rule. This paper

analyzes in more detail the task on the field structure

determination in the layer of the linear homogeneous

medium that allows for a simple analytical solution.

General relations

The electric area of the pulse is determined in the

following manner [6]:

SE =

∞
∫

−∞

E dt. (1)

Here E — electric field strength and t — time. Naturally, we

assume that the value (1) is finite, since we are interested in

the pulses, for which in the fixed point of space the electric

field strength is different from zero (apparently exceeds

the noise level) only for the finite interval of time. In

the monograph [7] and in some subsequent papers this value

appears as
”
integral of the field by time“. Various properties

of the electric area of maximally short pulses are summed

in the reviews [8–10]. It is essential that the value of the

electric area serves as the main criterion for the effectiveness

of such pulses interaction with microobjects. Within the

plane wave (one-dimensional) approximation, which is used

in [4] and below in this paper, from the Maxwell equations

it follows that the electric area is conserved for propagation

in the non-magnetic media [6]:

dSE

dz
= 0, (2)

where z — coordinate along the radiation propagation

direction.

To reduce the task to the classic one, we use interpre-

tation of the electric area of the pulse as a zero-frequency

spectral component of the field:

SE = lim
ω→0

Sω, (3)

where

Sω =

∞
∫

−∞

E exp(−iωt)dt

— Fourier component of the electric field strength.

Let us consider the reflection and transmission of the

plane wave with frequency ω, which is normally incident

from the vacuum to the medium layer with (complex)
refraction index ε (Fig., a). Omitting the time factor
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Transmission and reflection of radiation in the medium layer with sharp boundaries (a) and with the boundary transition present (b, which
are dashed).

exp(−iωt), the real part sign, and a single vector indicating

the direction of the linear polarization of radiation, let

us record the solutions to the wave equation (Helmholtz

equation)
d2E
dz 2

+ k2(z )E = 0 (4)

for distribution of the electric field strength in the following

form

z < 0 : E = A exp(ik0z ) + B exp(−ik0z ),

0 < z < L : E = C exp(ikz ) + D exp(−ikz ),

z > L : E = F exp[ik0(z − L)]. (5)

Here k(z ) = k0 = ω/c at z < 0 and z > L and k(z ) =
= k = k0

√
ε at 0 < z < L (the root branch is chosen based

on the requirement of decay of the amplitude of forward

wave C upon increase of z ). The conditions of continuity E
and dE/dz at the interfaces result in the ratios

C
A

=
2 k0

k (1 + k0

k )

(1 + k0

k )2 − (1− k0

k )2 exp(2ikL)
,

D
A

=
2 k0

k (1− k0

k )

(1 + k0

k )2 exp(−2ikL) − (1− k0

k )2
,

F
A

= C exp(ikL) + D exp(−ikL),

B
A

= −1 +
C
A

+
D
A
. (6)

Electric area

In the limit ω → 0 the coefficients A, B and F change into

the electric area of accordingly the forward and backward

transmitted pulses; with a certain convention one can also

assume that C and D are the electric areas of forward

and backward transmitted pulses within the layer. Due

to linearity of the task, without the loss of generality, one

may assume that A = 1. Then B represents the amplitude

coefficient of reflection, and F — the amplitude coefficient

of transmission.

For a dielectric the dielectric permittivity at zero fre-

quency is equal to its (finite) static value ε0. From (6)
at ω → 0 we get

C =
1

2

(

1 +
1

√
ε0

)

,

D =
1

2

(

1−
1

√
ε0

)

, B = 0, F = 1. (7)

Therefore, the electric area everywhere coincides with the

area of the incident pulse. For the electric area the layer

is completely transmissive, there is no reflection. This is

compliant with the more general conclusion [11].
In case of the medium with the electric conductivity we

will use the Drude model

ε(ω) = 1−
ω2

p

ω(ω + iγ)
, (8)

where ωp — plasma frequency and γ — decay index. In the

limit of ω → 0 the dielectric permittivity (8) has singularity:

ε(ω) ≈
iω2

p

γω
. But the wave number in such medium is

k = k0

√
ε ≈ q

c

√
ω, where q =

√

i
ω2

p

γ
. In this case using (6)

we find

C = D =
1

2 +
ω2

pL

cγ

,

F =
1

1 +
ω2

pL

2cγ

,

B = −

(

1−
1

1 +
ω2

pL

2cγ

)

. (9)

Therefore, if there are free charges, the electric area differs

from the area of the incident pulse. In the definition (1) it is
constant everywhere in accordance with the general rule of

its conservation, without changes within the layer. Besides,

inside the layer the areas of the forward and backward
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transmitted waves determined as specified above do not

depend on the longitudinal coordinate z and are equal to

each other.

Role of transition layers

The model of the stepwise variation of dielectric per-

mittivity at the boundaries of the layer is idealization.

In the more accurate model such boundaries are replaced

with additional layers with smooth variation of dielectric

permittivity between its boundaries values (Fig., b). The

impact of such layers may be taken into account in

the perturbation theory [12]; there is a known series of

dependences ε(z ), for which the analytic solutions are

available for equation (4), including the Rayleigh layer,

ε(z ) = a(ω)/z 2 [13].
The analysis shows that the transition layers do not

change the results of the model of stepwise variation of

dielectric permittivity, if their thickness l is essentially

smaller than the corresponding length of the radiation

mode. Since the electric area of the pulse complies

with the zero frequency and therefore with the infinitely

large wave length λ = ∞, the presence of the transition

layers will not in any way impact the coefficients of

reflection and transmission given in the previous sec-

tion. This may easily be confirmed for the Rayleigh

layer model. The criterion here would be the unitless

value [13]

p =

(

2πl
λ

)2∣
∣

∣

∣

√
ε

√
ε − 1

∣

∣

∣

∣

2

. (10)

In the case of our interest p = 0, which justifies the model

of stepwise variation of dielectric permittivity.

Conclusion

In this paper within the plane wave (unidimensional)
approximation the electric area is found for the pulses of

radiation that was reflected and transmitted through the

layer of the homogeneous medium with electric conductivity

if there are the transition near boundary layers of the

medium available. The conclusions are essentially different

from the predictions of the unidirectional propagation

approximation. Besides, the plane wave approximation

may be justified in respect to propagation of pulses in

coaxial waveguides [14]. Other options for justification

of the results applicability, such as replacement of the

boundaries with inclined or scattering surface, requires

going beyond the one-dimensional geometry and are not

considered here.

The importance of the analytical nature of the con-

clusions is emphasized by the fact that the numerical

calculations of the maximally short pulses are com-

plicated with the potential availability of their hard-to-

account for fronts. Therefore, the numerical simula-

tion, for example in [15], may mean the existence of

a pronounced unipolar pulse accompanied with the ex-

tended front of opposite polarity and small amplitude.

Such conclusion is compliant with the result of [11]
and at the same time is not lessening the importance

of calculations of [15], since such front will not impact

the effectiveness of the pulse impact at the microob-

jects [9].
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