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1. Introduction

CoSi is a semimetal. It was studied as a promising

thermoelectric material [1], but the topological properties of

its band structure have been also of interest in recent years.

CoSi crystallizes in the B20 cubic structure (space group

P213, No. 198) that has no inversion center [2]. Features of
the crystal structure lead to the fact that at the time-reversal

invariant momentum points Ŵ and R of the Brillouin zone

the emergence of multiply degenerate energy levels with

a linear dispersion law in their vicinity is possible [3–6].
Therefore, CoSi appears to be a topological semimetal

where, as opposed to the Dirac and Weyl semimetals, nodes

at the Ŵ- and R-points have a topological charge equal to 4 in

absolute value. Features of the band structure and presence

of topological nodes have been proved by the angle-resolved

photoelectron spectroscopy experiments [7–9].

Behavior of the Weyl semimetals in a magnetic field has

a number of interesting features [10]. They include —
chiral anomaly and negative magnetoresistance [11] that are
associated with the Landau level spectrum in a magnetic

field containing a zero chiral level where carriers can move

only along or opposite to the field depending on the

topological charge sign. These effects in CoSi were studied

in [12]. In CoSi, quantum oscillations of resistance [13,14]
and thermopower [15] were also examined in fields up to

15 T that were interpreted in view of features of the band

structure and topological charges.

CoSi and isostructural materials demonstrate a wide

variety of magnetic properties. CoSi single-crystals at

temperatures above 25K are diamagnetic materials, but at

lower temperatures, magnetic susceptibility of most samples

reverses the sign [16,17]. CoSi solid solutions with a low

concentration of Fe are diamagnetic at room temperature,

while ferromagnetic properties appear with an increase in

Fe concentration [18]. In the isostructural material MnSi

in low magnetic fields, a helical magnetic structure was

revealed, which transforms into a ferromagnetic structure

with increasing field [19,20]. A skyrmion phase may also

appear in MnSi [21].

Magnetic susceptibility of topological semimetals also has

some features. Susceptibility of the Weyl semimetals was

investigated in several papers that are summarized in [22].
A giant diamagnetic anomaly characterized by divergence of

susceptibility when chemical potential approaches the Weyl

node energy was reported in [23]. This anomaly in the

Weyl and Dirac semimetals was also studied in [24,25]. It

was analyzed for an arbitrary tilt of the spectrum in [26].
The temperature dependence of susceptibility is also non-

monotonic and has a minimum at T ≈ 0.443µ/kB [22],
where µ is the chemical potential counted from the node

energy, kB is the Boltzmann constant. It is interesting that a

similar feature was observed in the Weyl semimetal TaAs at

approximately 185K [27]. Examination of magnetization

in TaAs in [28] has also shown that, as opposed to

quasiparticles with a nonrelativistic spectrum, the Weyl

semimetal has no saturation of longitudinal magnetization

in strong fields.

For multi-Weyl semimetals, where a topological charge

exceeding 1 is associated with non-linear dependence of

energy on the wave vector in some directions, the spectrum

in the magnetic field and the density of states were

calculated in [29]. For fermions with preudospin 1 and

liner dispersion law, the spectrum in the magnetic field was
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reported in the Appendix to [3]. For fermions with higher

pseudospins, the Landau levels were calculated in [30].
However, the magnetic susceptibility was not addressed in

these papers.

In CoSi, low-energy excitations near Ŵ and R points

without considering the spin-orbit interaction correspond

to quasiparticles with pseudospin 1 (spin-1 fermions) [3,4]
and double Weyl fermions [8], respectively. They feature

a topological charge equal to 2 in absolute value. The

spin-orbit interaction splits the multiplet at the Ŵ-point into

the Weyl doublet and a fourfold degenerate level with

a topological charge equal to 4 in absolute value. At

the R-point, the multiplet is split into a doublet without

a topological charge and a sixfold degenerate node with the

same topological charge in absolute value, but of opposite

sign. In addition, there are other topologically nontrivial

points and band degeneracy planes in the Brillouin zone.

Such a wide range of topological nodes found in CoSi gives

a reason to the study of their splitting in a magnetic field

and the resulting features of magnetic susceptibility.

2. Calculation of the electronic spectrum
of CoSi in a magnetic field

The electronic spectrum was calculated using gene-

ralised gradient approximation for density functional in

QuantumESPRESSO [31]. In our calculations we used

norm-conserving relativistic pseudopotentials [32], kinetic

energy cut-off of 80Ry for expansion of wave functions

in plane wave basis and a 8× 8× 8 grid for integration

over the Brillouin zone. The equilibrium lattice constant

a0 = 4.438 Å and atom positions were taken from [33]. The
calculation was performed both without and with the ac-

count of spin-orbit interaction (SOC), and the corresponding

band structures are shown in Figure 1 in [33].

The calculated Bloch functions and energies on the

above-mentioned grid were used to construct the tight-

binding Hamiltonian in Wannier90 [34]. Then, the elec-

tronic spectrum in the magnetic field was calculated using

WannierTools package [35]. The magnetic field influence

was considered in the tight-binding Hamiltonian through the

Peierls substitution [36]. The magnetic field was oriented

along the z axis, and a magnetic supercell consisting of

q unit cells of crystal was formed in a plane perpendicular

to the field. The magnetic B -field strength was defined

in such a way that an integer number of p quanta of

flux 80 = 2π~c/e, i. e. B = p80/(qa2
0), flows through

the magnetic supercell area. The experimentally available

magnetic fields are about 15 T [12–15] that corresponds to

the magnetic supercell size q = 1400. A larger cell size

requires considerable computational resources and limits

from below the magnetic field range available for calculation

in the tight-binding model. In low magnetic fields, the

electronic spectrum near Ŵ-point may be calculated using

k · p approximation.

Without considering the spin-orbit interaction and mag-

netic field, the Hamiltonian at the Ŵ-point corresponds to

quasiparticles with pseudospin 1, it was used in [33] to study

the influence of deformation on the topological properties

of CoSi. The Hamiltonian can be calculated as follows.

Decomposition of the group of the wave vector at the

Ŵ-point of the Brillouin zone with respect to the translation

subgroup leads to a factor group isomorphic to the point

group T (23). It has 3 one-dimensional representations

Ŵ1, Ŵ2, Ŵ3 and one three-dimensional representation Ŵ4,

according to which both a vector and a pseudovector are

transformed due to the absence of the inversion center.

We are interested in a threefold degenerate level at the

Ŵ-point. The electron wave functions of this level |X〉,
|Y〉 and |Z〉 are transformed according to the representation

Ŵ4 as radius vector projections. CoSi is a cubic crystal,

but its symmetry group does not contain an inversion,

therefore matrix elements of the momentum operator on

the chosen basis functions may be non-zero. To see

this it is sufficient to show that the direct product of

representations according to which the wave functions and

their complex conjugates transform contains the represen-

tation according to which momentum components trans-

form. As a matter of fact, Ŵ4 ⊗ Ŵ∗4 = Ŵ1 ⊕ Ŵ2 ⊕ Ŵ3 ⊕ 2Ŵ4
contains Ŵ4, therefore some momentum matrix elements

should be non-zero. The analysis shows that, taking into

account the time reversal symmetry, the matrix elements

〈X |p̂y |Z〉 = 〈Y |p̂z |X〉 = 〈Z|p̂x |Y 〉 are non-zero, therefore the
Hamiltonian expansion in powers of the wave vector starts

with linear terms. According to the method of invariants, the

k · p-Hamiltonian may be written as Ĥ(1) = 6νaν6i Xν
i Kν∗

i ,

where Kν∗
i is the combinations of wave vector components

transforming according to the representation ν , Xν
i is the

basis matrices transforming according to the same represen-

tation and aν are constants. Since only terms linear in k

are included in the Hamiltonian, wave vector components

transforming according to the representation Ŵ4 should be

used instead of Kν∗
i . The basis matrices Xν

i may be chosen

in the form of linear combinations of nine independent

matrices 1̂, Ĵx , Ĵy , Ĵz , Ĵ2
x , Ĵ2

y , {Ĵx , Ĵy}, {Ĵy , Ĵz}, {Ĵz , Ĵx},
where Ĵx(y,z ) are the matrices of the projections of the

angular momentum 1 [37]. Among them, two sets Ĵx , Ĵy , Ĵz

and {Ĵy , Ĵz}, {Ĵz , Ĵx}, {Ĵx , Ĵy} transform according to the

representation Ŵ4 as are the wave vector components kx , ky ,

kz . Taking into account the symmetry with respect to time

reversal, the first of them must be chosen, and the Hamil-

tonian may be written as Ĥ(1) = ~v Ĵ · k̂, where v is the

electron velocity. In our case, it is more convenient to switch

to a canonical basis |Y 1
1 〉 = (−i|X〉 + |Y 〉)/

√
2, |Y 1

0 〉 = i|Z〉,
|Y 1

−1〉 = (i|X〉 + |Y 〉)/
√
2 [38] where the Hamiltonian will

be equal to

Ĥ(1) = ~v











kz
kx−iky√

2
0

kx +iky√
2

0
kx−iky√

2

0
kx +iky√

2
−kz











. (1)
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Figure 1. The electronic spectrum of CoSi in a 15T magnetic

field without considering spin-orbit interaction. Symbols — the

tight-binding model calculation, lines — the k · p calculation (chiral
levels are shown as dashed lines and three series of levels with

n ≥ 0 are shown as solid lines).

The influence of the magnetic field is taken into

account by replacing the momentum ~k with operator

π̂ = ~k̂ + eA/c . In the Landau gauge, the vector potential

A = (0, Bx , 0). Let us introduce the raising and lowering

operators using the relations

â+ = (π̂x + iπ̂y )/(i
√
2b~), â = −(π̂x − iπ̂y )/(i

√
2b~),

where b is proportional to the magnetic field: b = eB/(~c)
and is related to the magnetic length by the relation b = l−2.

As a result, the Hamiltonian is written as

Ĥ(1)
B = ~v







kz −i
√

bâ 0

i
√

bâ+ 0 −i
√

bâ

0 i
√

bâ+ −kz






, (2)

where kz is the projection of the wave vector in the field

direction.

The eigenvector components can be sought for in the

form of expansion in wave functions of the harmonic os-

cillator φn(x): ψi(x) = 6nc(n)
i φn(x), i = 1, 2, 3, where n is

the oscillator level number [39]. Substitution of ψi(x) in the

Schrödinger equation with the Hamiltonian (2) results in a

system of equations with an infinite number of variables c(n)
i .

Fortunately, this system can be divided into systems of linear

equations in three unknown variables c(n)
1 , c(n+1)

2 , c(n+2)
3 ,

if we take into account the orthogonality of the functions

φn(x) and replace n by n + 1 (n + 2) in expansions of ψ2

(ψ3). For the given n, such system of equations will be

written as Ĥc = ǫc, where c = (c(n)
1 , c(n+1)

2 , c(n+2)
3 )T,

Ĥ = ~v







kz −i
√

b(n + 1) 0

i
√

b(n + 1) 0 −i
√

b(n + 2)

0 i
√

b(n + 2) −kz






.

(3)

The solutions of the secular equation of this system

determine the Landau levels. Since c(n)
i = 0 at n < 0, this

system must be solved for integer n ≥ −2. The energy levels

for n ≥ 0 are determined from the cubic equation

ǫ3 − (~v)2(k2
z + (2n + 3)b)ǫ + (~v)3bkz = 0. (4)

For each n, three solutions are achieved and form three

Landau level subbands (see Figure 1). The corresponding

stationary state vectors have three non-zero components.

At n = −2 (−1), the first and second (first) ele-

ments of column c should be zeroed. The spec-

trum is achieved by solving the secular equation

obtained by removing the first and second (first)
columns and rows from the matrix (3). Energies of

these chiral Landau levels are equal to ǫ
(1)
χ = −~vkz ,

ǫ
(2,3)
χ = ~v(−kz ±

√

k2
z + 4b)/2. The corresponding sta-

tionary state vectors are equal to ψ
(1)
χ = (0, 0, φ0) and

ψ
(2,3)
χ = (0, i

√
bφ0,−(ǫ/~v)φ1)/

√

(ǫ/~v)2 + b.
The electronic spectrum of CoSi in the magnetic field

obtained without considering the spin-orbit interaction is

shown in Figure 1, where ~v = 1.22 eVÅ was used [33].
This agrees with those obtained in [3,30]. In [3], it was

discussed in connection with the description of low-energy

excitations near P-point of the Brillouin zone of a cubic

body-centered lattice belonging to space group No. 199,

where k · p-Hamiltonian also corresponded to quasiparticles

with spin 1. In [30], in addition to quasiparticles with

pseudospin 1, the Landau levels for quasiparticles with

pseudospins 3/2 and 2 were also addressed.

For the Weyl node with topological charge 1, there is one

chiral level and two series of the Landau levels that form the

conduction band and valence band states. In our case, the

topological charge of the node is equal to 2. In accordance

with this, there shall be two chiral levels (shown dashed

in Figure 1). One of them ǫ
(1)
χ is shown as a single line

and coincides with that for an ordinary Weyl node at the

same v . The second chiral level consists of two parts ǫ
(2,3)
χ .

States for n ≥ 0 form three bands: a valence band, a

conduction band and a narrow band in the center. The states

in the valence band and conduction band, as opposed to the

Weyl node, are not symmetrical with respect to kz = 0, but

the electronic spectrum in general is the odd function of

kz . Extremum positions in the conduction band and valence

band

ǫc(v) = ±~v

√

(3 + 2
√
2)b/2

correspond to points

kz = ±
√

b/(6 + 4
√
2).

These spectrum branches in this approximation are not

limited from above and below, however, a natural limitation

is the region of wave vectors |kz | ≤ k0 and energies

|ǫ| ≤ ǫ0 = ~vk0, where k ·p method matches well with the

band structure of this material. For estimations in CoSi,

k0 = 0.071 Å−1 and ǫ0 = 0.087 eV were used.
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A feature of the spectrum of quasiparticles with pseu-

dospin 1 in the magnetic field is the presence of the energy-

limited narrow band with high density of states. The energy

limits are equal to ±ǫm, where ǫm = ~v

√

(3− 2
√
2)b/2,

and are achieved at kz = ±
√

b/(6− 4
√
2).

Figure 1 shows that the k · p method and the tight-binding

method match well at energies higher than the energy of Ŵ

node without field ǫŴ. At ǫ < ǫŴ, points in the tight-binding

method merge with each other (the gray region in Figure 1).
Differences at ǫ < ǫŴ are associated with the fact that

the tight-binding method includes the contribution of other

states, for example, of peak in M-point, that overlap with

the spectrum in the valence band near Ŵ-point (see Figure 1

in [33]).
To consider the spin-orbit interaction, the basis of

electronic states was expanded to take into account the spin

component|Y 1
m〉 ⊗ | ↑〉, |Y 1

m〉 ⊗ | ↓〉, m = 1, 0, −1. In this

basis, the spin-orbit interaction operator in the zeroth order

approximation in the wave vector is written as

ĤSOC =























1 0 0 0 0 0

0 −1
√
21 0 0 0

0
√
21 0 0 0 0

0 0 0 0
√
21 0

0 0 0
√
21 −1 0

0 0 0 0 0 1























. (5)

In view of SOC, the 6-fold degenerate level at the Ŵ-point

is split into 4- and 2-fold degenerate levels with energy shift

by 1 and −21, respectively (Figure 2). Near Ŵ-point, the

Hamiltonian is written as Ĥ = Ĥ(1) ⊗ 1̂2×2 + ĤSOC . The

spin-orbit splitting magnitude was obtained from ab initio

calculations and was equal to 1 = 18MeV.

The spectrum in the magnetic field may be calculated

in a similar way by introducing the vector potential into

the momentum operator and proceeding to the raising

and lowering operators. The Zeeman splitting may be

considered using an additional term Ĥ(Z) = µBB 1̂3×3 ⊗ σ̂3,

where µB is the Bohr magneton, σ̂3 is the Pauli matrix.

The column of coefficients of state vector expansion over

oscillatory functions in this case contains six components

c = (c(n)
1 , c(n+1)

2 , c(n+1)
3 , c(n+2)

4 , c(n+2)
5 , c(n+3)

6 )T, and matrix

Ĥ is written as

Ĥ = ~v























1∗ + kz + µ∗b 0 −i
√

b(n + 1) 0 0 0

0 −1∗ + kz − µ∗b
√
21∗ −i

√

b(n + 2) 0 0

i
√

b(n + 1)
√
21∗ µ∗b 0 −i

√

b(n + 2) 0

0 i
√

b(n + 2) 0 −µ∗b
√
21∗ −i

√

b(n + 3)

0 0 i
√

b(n + 2)
√
21∗ −1∗ − kz + µ∗b 0

0 0 0 i
√

b(n + 3) 0 1∗ − kz − µ∗b























, (6)

where 1∗ = 1/(~v), µ∗ = µBc/(ev).
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Figure 2. The electronic spectrum of CoSi near Ŵ-point with

the account of the spin-orbit interaction obtained using k ·p

approximation (lines) and ab initio calculation (dots).
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Figure 3. The electronic spectrum of CoSi near Ŵ-point in a

1 T magnetic field with spin-orbit interaction. The first 20 Landau

levels are shown for each subband.

The spectrum in the 1 T magnetic field is shown in

Figure 3. At such relatively low fields, spin-orbit splitting

appears to be higher than level splitting in the magnetic

field, and the Landau level related to quasiparticles with

pseudospin 3/2 (four upper bands, j = 3/2) and the Weyl
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Figure 4. The electronic spectrum of CoSi near Ŵ-point in a 15T

magnetic field with spin-orbit interaction. Symbols — tight-binding

model calculation, lines — calculation in k · p approximation.

fermions (two lower bands, j = 1/2) can be seen in the

energy band diagram. They are derived from the secular

equation at n ≥ 0. At n = −1, −2 and −3, the system

order decreases and 9 additional levels occur. Two of them

appear to be the ordinary levels and are related to the Weyl

fermion levels with the lowest numbers. Other seven levels

are shown dashed in Figure 3. Six of them couple 4 upper

bands and one of them couples 2 lower bands. Only 5 of

these levels appear to be chiral: 4 for quasiparticles with

preudospin 3/2 and 1 for the Weyl fermions, which agrees

with the topologocal charges equal to 4 and 1, respectively.

Such band pattern approximately corresponds to the spectra

of quasiparticles with pseudospin 3/2 and the Weyl fermion

spectra in the magnetic field that were calculated before, for

example, in [30]. Distortions compared with [30] are caused

in CoSi by interaction of the abovementioned bands. This

interaction results, in particular, to the facts that the energies

of states j = 3/2, m = −1/2 and j = 1/2, m = 1/2 weakly

depend on the number of the Landau level n resulting in

appearance of region of high density of states in the center

of the spectrum.

In the 15 T field, subband shifts in the magnetic field

are comparable with the magnitude of spin-orbit splitting 1

(see Figure 4). The Landau levels originating from the states

of quasiparticles with pseudospin 3/2 and the Weyl fermions

are strongly overlapping: states with j = 1/2, m = 1/2

move up and form, together with j = 3/2, m = −1/2, a

region of high density of states near the chemical potential.

This region is similar to that obtained without considering

SOC (Figure 1). Above it, 4 chiral levels and states of

bands j = 3/2, m = 1/2 (3/2) are located. Figure 4 shows

that, as without SOC, the k · p method and the tight-binding

method match well at the energies higher than the energies

of the Ŵ node without field ǫŴ and differences at ǫ < ǫŴ
are associated with the contributions of states from other

regions of the Brillouin zone.

3. Orbital magnetic susceptibility
of quasiparticles with pseudospin 1

The magnitude of magnetic susceptibility in material is

defined by all filled states, however, its variation depending

on the temperature and chemical potential µ is defined

by the spectrum region near µ. The effect of topological

nodes on the susceptibility variation will be manifested, if

the chemical potential is near the node energy. According

to [22,24,25], the contributions to the magnetic susceptibility

may be divided into those from the spectrum region near

the node limited by the energy range ±ǫ0 and those from

other parts of spectrum giving the background contribution.

In [22,24,25], contribution to the susceptibility from the first

and second types of Weyl nodes was studied. In CoSi, the

chemical potential is near the node energy at the Ŵ-point.

As shown above, the Landau level spectrum in CoSi

appears to be quite complicated, in particular, considering

SOC. However, both with and without considering SOC,

the chemical potential is in the region of high density of

states, and this is the difference of this spectrum from the

Weyl fermion spectrum. The simplest description of this

feature is provided when the spectrum of quasiparticles with

pseudospin 1 in the magnetic field is examined when the

peak of the density of states is associated with the Landau

levels of the middle dispersionless band. Therefore, the

study addresses the orbital contribution to the susceptibility

of quasiparticles with pseudospin 1 without considering the

spin-orbit interaction and Zeeman splitting in the limit of

weak magnetic fields for which it was possible to derive an

analytical expression.

To calculate the susceptibility, it is necessary to calculate

the thermodynamic potential of a unit volume of substance

depending on the magnetic field

�i = −bkBT
2π2

×
k0

∫

−k0

dkz

∑

n

ln

(

1 + exp
(µ − ǫi(n, kz , b)

kBT

)

)

, (7)

where i indicates the contributions of the states of conduc-

tion band (�c), valence band (�v), chiral levels (�χ) and

a narrow band in the center (�m). In (7), µ is the chemical

potential that is counted from the node energy at the

Ŵ-point, k0 = ǫ0/~v , and the energy ǫ(n, kz , b) is the func-

tion of the Landau level number n, wave vector along field

kz and magnetic field B ∝ b. Expression (7) takes into ac-

count twofold spin degeneracy. Then, the magnetic suscep-

tibility is defined as χ = −∂2�/∂B2 = −(e/~c)2∂2�/∂b2.

In the given case of low magnetic fields, contribution to

the diamagnetic susceptibility from the Landau levels in the

conduction band and valence band may be found by passing

from summation over n to integration over energy using the

Euler-Maclaurin equation. Integration is performed from

−ǫ0 to ǫ0, and the required derivatives from energy may be

taken using the secular equation.
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For the Weyl semimetal, the chiral level does not depend

on the magnetic field and does not contribute to the

susceptibility. For quasiparticles with pseudospin 1, the

second chiral level consisting of two parts depends on the

magnetic field. The total contribution to the diamagnetic

susceptibility from the valence band, conduction band and

parts of the second chiral level adjacent to these bands, χcv ,

appears to coincide with the contribution to the diamagnetic

susceptibility of the Weyl node reported in [22]:

χcv = − v

6π2~

(e
c

)2
ǫ0

∫

0

dǫ
ǫ

(

f 0(−ǫ) − f 0(ǫ)
)

, (8)

where f 0(ǫ) = 1/(1 + exp[(ǫ − µ)/(kBT )]) is the Fermi

distribution function. As shown in [22], depen-

dence of susceptibility on the chemical potential

χcv ≈ −ve2/(6π2c2
~) ln(ǫ0/|µ|) at low temperatures loga-

rithmically diverges at µ = 0.

For quasiparticles with pseudospin 1, contribution of the

narrow middle band shall be also considered. The feature

of its spectrum is in that it occupies a finite energy range.

As opposed to other bands, all Landau levels of the narrow

band in the magnetic field are within this finite range ±ǫm.

This results in occurrence of the peak of density of states

near the node energy and the magnetic susceptibility in a

weak field appears to be equal to

χm =
v2k0

2π2

arctg(
√
3/2)√

3/2

(e
c

)2(

−∂ f 0

∂ǫ

)

ǫ=0
. (9)

Contribution of χcv to the orbital susceptibility appears to be

negative and corresponding to a conventional diamagnetic

contribution and contribution of χm appears to be positive.

Dependences of both contributions on the chemical poten-

tial have a sharp peak near the node energy, but different

magnitude and functional form.

Figure 5 shows dependences of the contribution of topo-

logical nodes to the orbital susceptibility on the chemical

potential at 50K. The susceptibility of the Weyl semimetal is

negative and grows in absolute value when µ approaches the

node energy. The orbital susceptibility of quasiparticles with

pseudospin 1 coincides with the Weyl susceptibility when µ

moves away from the node energy. When µ approaches the

node energy, contribution of χm to the orbital susceptibility

appears to be prevailing and the susceptibility changes sign.

Ab initio calculations show that in stoichiometric CoSi

at low temperatures the chemical potential is located lower

than the energy of node at the Ŵ-point approximately by

0.01 eV. The chemical potential depends on the temperature

and may be changed intentionally by means of doping.

When the temperature rises to room temperature, the

chemical potential increases by approximately 0.02 eV, i. e.

changes within ±0.01 eV near the node. For comparison

with the Weyl semimetal, Figure 6 shows the temperature

dependences of susceptibility for fixed chemical potentials

from the abovementioned range: µ = −0.003 and 0.01 eV.

While the susceptibility for the Weyl node is negative
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Figure 5. Dependence of the orbital susceptibility on the chemical

potential for quasiparticles with pseudospin 1 (curve 1) and for the

Weyl node (2) at 50K.
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Figure 6. Dependence of the orbital susceptibility on temperature

for quasiparticles with pseudospin 1 (curves 1, 1′, 1′′) and for the

Weyl node (2, 2′) at µ = −0.003 eV (1, 2) and 0.01 eV (1′, 2′),
and also considering µ(T ) (1′′) (see the explanations in the text).

and has minimum in the temperature dependence, it is

positive for the quasiparticles with pseudospin 1 and its

temperature dependence has a peak. Extrema on the

temperature dependences in both cases are more distinctive

when the chemical potential approaches the node energy.

The chemical potential position in CoSi changes when

cobalt is substituted by other 3d metals. For example,

when Co is substituted by Fe, the chemical potential moves

down, and when Co is substituted by Ni — the chemical

potential moves up along the energy. Curve 1′′ in Figure 6

was plotted considering the dependence of the chemical

potential on the temperature at constant concentration of

carriers corresponding to 0.6 at.% of Ni. In this case, the

chemical potential at 50K coincides with the node energy

resulting in dramatic growth of susceptibility.
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A non-monotonic dependence of susceptibility on tem-

perature was observed, for example, in the Weyl semimetal

TaAs whose temperature dependence of susceptibility had

a minimum at about 185K [27]. Higher diamagnetic

susceptibilities in graphene were discussed in [40] that re-
ported their relation to the contribution of virtual interband

transitions. Change of sign of the orbital susceptibility in a

graphene type two-dimensional lattice was addressed in [41].
It was shown therein that the orbital susceptibility changes

sign from diamagnetic to paramagnetic in transition from

graphene to the dice lattice that is formed when an atom is

added to the center of graphene hexagons. As shown in [42]
when two-dimensional lattices were discussed, the orbital

susceptibility always appears to be paramagnetic (positive)
when the chemical potential is near the saddle point of the

band structure.

The magnetic susceptibility in CoSi was experimentally

studied in [16], which showed that it is of a diamagnetic

nature (negative) at high temperatures. When the tempera-

ture decreased in the most pure samples, the susceptibility

increased and changed sign to positive at a temperature

below 25K achieving 10−5 emu/mole. In [16] it was

supposed that this might be due to the manifestation of

antiferromagnetic interaction at low temperatures. Estima-

tions shown in Figure 6 demonstrate similar temperature

dependence and order of magnitude that gives ground to

suggest that the contribution of topological states to the

magnetic susceptibility of CoSi is exhibited. This feature of

susceptibility of CoSi requires additional investigation taking

into account the contribution to susceptibility not only of

topological states near Ŵ-point, but also of other spectrum

parts. This paper calculates the contribution corresponding

to the orbital magnetic susceptibility without considering the

spin splitting and effect of the spin-orbit interaction. The

factors listed above are to be considered in future studies.

4. Conclusion

The spectrum of CoSi in a magnetic field near the

Ŵ-point has been calculated. The calculation was performed

in k · p approximation without and with considering the

spin-orbit interaction. In the former case, the Landau

levels correspond to the quasiparticles with pseudospin 1.

When the spin-orbit interaction is considered in weak

magnetic field, the Landau levels of the Weyl fermions and

quasiparticles with pseudospin 3/2 may be distinguished in

the spectrum. The appearing differences are associated with

the interaction of bands.

Comparison of the Landau levels calculated in k · p
approximation and tight-binding approximation showed that

they match well in the region of energies above the

node, and differences at lower energies are caused by

the contributions of other regions of the Brillouin zone.

The spectrum has the chiral Landau levels whose number

corresponds to the magnitude of topological charge.

The orbital susceptibility of quasiparticles with pseu-

dospin 1 was calculated and was demonstrated to contain

two contributions. The contribution of the valence band

and conduction band states appeared to be diamagnetic,

it coincided with that for the Weyl quasiparticles. The

contribution of the narrow middle band appeared to be

paramagnetic; it prevailed when the chemical potential was

near the node energy. Possible relation was noted between

the contribution of topological states to the magnetic

susceptibility and the experimentally observed change of

sign of the susceptibility from negative to positive at a

temperature decreasing to 25K [16].
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