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A numerical analysis of the features of the dielectric spectra of crystalline substances deposited on insulating

substrates, excluding the possibility of through-current flow, is carried out. The analysis is based on the use of the

distribution function of the numbers of relaxers according to their relaxation times. It is shown that the principles of

numerical analysis are different for different types of features of dielectric spectra. The Gavrilyak−Negami function

is used to analyze features occupying narrow frequency ranges (1ω ≤ 1 order of magnitude ω).For wider ranges
(1ω ∼ 2−3 orders of magnitude), the improved Gavrilyak−Negami function is used.For the broadest features

(1ω > 3 orders of magnitude), the role of the distribution function is played by the function of the frequency

dependence of the imaginary part of the dielectric constant ε′′( f ), which is obtained experimentally.Before use,

this function is converted to the function ε′′(τ ), and the shape of this function is adjusted using a special algorithm.
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1. Introduction

Dielectric spectra (DS) analysis is limited to processing of

the electrical response of crystalline and amorphous materi-

als to low-frequency sinusoidal electric field. For the expe-

rimental dielectric spectroscopy method, frequency profile
functions of the complex permittivity components of the test

material are the main and most informative spectra elements

that carry maximum information. ε∗(ω) = ε′(ω) + iε′′(ω)
(here, ω = 2π f , where f is the probing electric field

oscillation frequency, i is the imaginary unit) [1–3].
More specifically, — of interest are: the dielectric loss an-

gle tangent tg δ( f ) = ε′′( f )/ε′( f ) and differential function

of relaxation time distribution density by numerical values

that, as will be shown, may be constructed using the data

on ε′′( f ). The dielectric loss angle tangent tg δ( f ) = ε′′/ε′

is defined as the ratio between the imaginary part of the
material’s complex permittivity ε′′( f ) and its real part ε′( f ).
When a material sample that has little if any energy loss is

placed in the measuring cell of a dielectric spectrometer,

the phase angle between bias current and sinusoidal voltage

applied to the cell is equal to ψ = π/2. The bias current

oscillations lead in phase by this angle the sinusoidal voltage
applied to the cell. At the same time, a non-ideal dielectric

reduces the phase angle by δ due to the presence of

dielectric loss in the sample, so ψ = π/2− δ . Reduction of

loss is followed by the decrease of δ that widely varies for

different materials. Achievement of a possibly lower angle δ
is essential when using such materials in many devices and,

in particular, in high-quality instrumentation.

The previous decades have shown that detailed scien-

tific study of properties of various materials appeared to

be impossible without using the dielectric spectroscopy

methods. This resulted in design and successful creation

of a constellation of next generation high-quality industrial

dielectric spectrometers. Modern nanomaterials and high-

speed computers using advanced software played a vital

role in this process.

It should be noted that many studies containing the

experimental DS are limited to the Debye distribution

when analyzing relaxation processes discussed herein and

possible causes of DS features broadening are discussed

on the qualitative level only. There are also computational

studies [4–10] devoted to the DS analysis on the basis of

the Cole−Cole diagrams (CC diagrams), Davison functions,

Gavrilyak−Negami (GN function) functions, etc., but most

of them is based on mathematical algorithms constructed

using empirical data. At the same time, many studies

of dielectric spectroscopy devoted to the analysis of the

distribution function of the number of relaxers by their times

based on the analysis of the GN function do not contain

any step-by-step calculation of the shape and features of

experimental DS. It is apparent that computational methods

shall be used correctly for such calculations and this is a

separate problem.

The foregoing has defined the purpose of this study

that is limited to the demonstration of relaxation process

simulation principle based on the opportunities offered

by the computational methods used in the DS spectra.

Discussion in the proposed paper is subject to the following

algorithm.

1. At the initial stage, the constructed model assumes

that there is DS — frequency dependence of complex
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permittivity components ε∗(ω) and it is assumed that there

is no any relaxation-time distribution of relaxer density.

This version corresponds to the Debye model according to

which there is a single typical time of system relaxation

response τD to an external probing impact that is the same

for all relaxers. At the next stage, a problem is set out to

expand the computational capabilities of the model through

the analysis of the case with several types of relaxers with

each of them obeying the Debye distribution law. For

example, with two types of relaxers whose relaxation times

τD1 and τD2 are widely spaced on the time scale. This

problem is solved in the DS analysis by simple summation

of two expressions describing the Debye distribution.

2. The next simulation stage is limited to introduction,

instead of theδ-function used in the Debye distribution,

of a broadened distribution of the Debye type relaxers

simulated according to empirical analytical expressions.

Such broadened distribution is intended to analyze the

features of real DS more adequately.

3. At the next simulation stage, continuous relaxation-time

distribution of relaxers is introduced. In this case, the sum

is replaced with an integral and the weight function G(τ )
is introduced under the integral to define the contribution

of each type of relaxers to the common result. Frequency

dependence function of permittivity is calculated at tis stage

by the expression

ε∗(ω) = ε∞ + 1ε

∞
∫

0

G(t)
1 + iωτ

dτ . (1)

4. Further improvement of the proposed model is li-

mited to simulation of the weight function that is most

suitable for calculations. In particular, for this purpose

the Gavrilyak−Negami (GN) distribution function [11–14]
may be used that has adjustable parameters τHN, αHN and

βHN whose variation is intended to ensure coincidence

between the calculation and experiment. However, the

detailed analysis performed at the next stage of construction

of the proposed design model demonstrates an important

consideration that the choice of adjustable parameters that

ensure the same integration result according to (1) is

ambiguous.

5. It is also important that other types of weight functions

that differ in form from the GN function give the same

result during integration as that when using the GN function.

This situation suggests that solution of inverse search

problem G(τ ) — relaxer time-distribution function — is

not unambiguous.

6. The next stage is devoted to validity check of this

assertion and is limited to integration according to expres-

sion (1) which is satisfied for a set of various functions

used as the weight function G(τ ). And when almost any

mathematically
”
good“ analytical function G(τ ) is chosen,

integration gives a result that almost coincides with the

same function G(τ ) that has been introduced under the

integral as a weight function! Such repeatability suggests

that expression (1) actually represents a filtration equation

version of G(τ ) used in the classical function filtration

method through the Dirac δ-function [15–18], though,

except that in (1) the Debye function is used as a filtration

function. Being a classical distribution in the relaxation

theory, the Debye distribution is not a high-quality filter due

to the finite width of the Debye distribution and asymmetry

inherent in it. This fact results in correction of the

weight function G(τ ) to achieve the acceptable coincidence

between the integration result and experiment after fitting.

Therefore, software of modern dielectric spectrometers is

able to use the experimental function ε′′( f ) as G(τ ),
where f is replaced with τ , and get an acceptable result

after integration and correction of the form of ε′′(τ ).

2. Debye dielectric spectra

At the initial stage, the constructed design model assumes

that the features of DS are qualitatively, and sometimes

quantitatively, described by the Debye equation [1–3]:

ε∗(ω) = ε∞ +
1ε

[1 + iωτD ]
, (2)

where ω is the cyclic frequency, τD relaxation time,

1ε = ε′
∞

− ε′0, i is the imaginary unit.

One (or more) peak(s) on the frequency dependence

of the imaginary part of permittivity ε′′( f ), one (several)
step(s) for the real part ε′( f ) and one (or more) semicir-

cle(s) ε′′(ε′) on the CC diagram correspond to the presence

of one (or more) types of relaxers. When interpreting the

DS measurements, certain physical nature of each type of

relaxers are identified through the analysis of all available

experimental and theoretical data on the test material,

including the data acquired by other investigation methods.

It should be noted that one individual peak on the frequency

dependence of the imaginary part of permittivity ε′′( f ) is

assigned to each type of relaxers. For this, it is assumed

that such peak may be isolated unambiguously in the

experimental DS according to the Rayleigh criterium.

Figure 1 illustrates ε′ = ε∞ + 1ε/[1 + (ωτD)2], ε′′ =
= 1ε · ωτD/[1 + (ωτD)2] and ε′′(ε′) spectra plotted for

f = ω/(2π) in the logarithmic scale in accordance with

equation (2) for one type of relaxers with a single relaxation

time τD. Features of DS in this case represent a relatively

narrow (not more than one order of variation of f ) peak

of ε′′( f ), a clearly pronounced step with the same width

on ε′( f ) curve and a regular semicircle of the CC diagram:

ε′′(ε′).
Variables of equation (2) are chosen for the analysis in

such a way as to ensure correspondence of the design

curves in shape to the experimental curves and, in particular,

congruence of the Debye frequency f = 1/(2πτD) with

the frequency position of fmax peak on the experimental

function ε′′( f ). It should be noted that the next simulation

stages use typical relaxation times of about 1.6 · 10−4 s

(τHN, τD) that correspond to 103 Hz lying in the center

of the frequency range (10−2−107 Hz) of the dielectric

spectrometer.
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Figure 1. Frequency dependences ε′′, ε′ and the Cole−Cole diagram — ε′′(ε′) plotted using equation (2). τD = 1.6 · 10−4 s.
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Figure 2. Frequency dependences ε′′( f ), ε′( f ) and the Cole−Cole diagram — ε′′(ε′) plotted using equation (3). τD1 = 1.6 · 10−1 s,

τD2 = 1.6 · 10−5 s.

At the next stage, for adequate description of the DS

measurements with two peaks that correspond to the

presence of two types of relaxers in the test material,

expression (2) is transformed into expression (3) that takes

into account the superposition of two relaxation processes

with relaxation times, respectively, τD1 and τD2:

ε∗(ω) = ε∞ +
1ε1

[1 + (iωτD1)]
1ε2

[1 + (iωτD2)]
. (3)

ε′( f ), ε′′( f ) and ε′′(ε′) curves, i. e. dielectric spec-

tra (DS) plotted according to (3) are shown in Figure 2.

These DS also contain two narrow non-overlapping peaks

on ε′′( f ) curve, two clearly distinguished steps on ε′( f )
curve and two regular semicircles on the Cole-Cole —
diagram ε′′(ε′).

3. DS analysis using empirical analytical
expressions

Comparison of the DS measurements within the Debye

theory performed at the initial simulation stage with the

experiment results shows that the peaks and steps on

the experimental frequency dependences ε′′(t) and ε′( f )
appear to at least half as wide (in the logarithmic scale)
as on the design curves and the measured CC diagrams

do not look like regular semicircles; i. e.
”
heights“ of

the experimental CC semicircles are lower than their half

”
widths“ by 10−30%. Considering the foregoing, to make

the calculations more consistent with the measurements,

expressions (2) or (3) are modified at the next stage by

using equation (4) [11,15]:

ε∗(ω) = ε∞ +
1ε

[1 + (iωτ )2]
β
. (4)

Here, α and β are variables that lie in the range from 0

to 1 and are used to adjust, by varying them, the design

halfwidth and shape of the features of ε′( f ) and ε′′( f )
to the measurements. The experience shows that, though

the selection of α and β values and their specific physical

significance are ambiguous, complication of equation (2) by

this method that transforms it to equation (4) appears to

be helpful for classification of a wider set of experimental

DS. And, moreover, when fitting α and β, equation (4) may

be used to represent the experimental data in the analytical

form together with representation in the form of tables and

curves.

4. DS analysis using the function
of relaxation-time distribution
of the numbers of relaxers

The next stage of design modeling uses the analysis of the

general fitting method for the calculation and experimental

data. For this, function G(τ ) is introduced that has

physical significance of the relaxation-time distribution of

relaxers or each individual type of relaxers. In this case,

the expression for the frequency dependence of complex

permittivity (equation (2)) is written as (1). note that
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expressions (1) and (2) appear to be identical in case when

G(τ ) represents the Dirac δ-function (filtering property of

δ-function [16]).
A specific form of G(τ ) may vary widely, however, all

possible variations shall satisfy a set of general requirements.

In particular, G(τ ) shall have a single peak for each type of

relaxer. Moreover, is shall decline smoothly on both sides

of its peak such that lim[G(τ )] = 0 at τ → 0 and τ → ∞.

Such function, in principle, may be constructed even as

a curve, digitized, normalized and introduced as a digital

array into equation (1) using the corresponding software

package. The experience of such approach shows that good

agreement of the design and experimental data may be

achieved by varying a particular form of the proposed curve

(width, asymmetry, position on the frequency scale).
Therefore, the wide variation capability of G(τ ) ade-

quately describing the experiment indicates that there is no

reliable algorithm for acquisition of data on the structure

of G(τ ) through the analysis of the experimental DS.

And this, in turn, means that the optimum form of G(τ )
shall be constructed using additional considerations, for

example, detailed analysis of physical mechanisms defining

the specific relaxation processes in the test material.

Though such approach seems to be quite sophisticated,

it appears to be, as proven in real practice, fairly exe-

cutable. However, when using the computational algorithms

described herein, a question naturally arises regarding what

shall be used as the initial form of G(τ )? A wide variety of

options may be offered in response to this question. Some

of them are discussed in detail below.

5. Gavrilyak−Negami function gHN(τ )

One of the options is in using the GN function —
gHN(τ ) as the weight function G(τ ) [11], with the analytical

expression written as:

gHN(τ )=

( τ

τHN

)βHNαHN

sin(βHN2)

πτ
(( τ

τHN

)2αHN
+2
( τ

τHN

)αHN

cos(παHN)+1
)

βHN
2

,

(5)
where

2 = arctan

(

sin(παHN)
( τ

τHN

)αHN

+ cos(παHN)

)

and 0 ≤ 2 ≤ π.

Here, αHN and βHN represent the variables responsible

for halfwidth and asymmetry of the feature written as the

peak of gHN(τ ), and τHN ensures the peak position on the

frequency scale.

Disadvantage of this weight function option is in the

fact that the GN function (5) contains only two variables:

αHN and βHN and this, generally speaking, considerably

restricts the capability of varying its form when analyzing

the experimental data.

Figure 3 illustrates a series of gHN(τ ) curves (in the linear

and logarithmic scales) corresponding to some set of values

of αHN and βHN. The curves show that downward deviation

of αHN from 1 activates slow relaxers in the design model,

i. e. results in the growth of relative contribution of the slow

relaxers with longer relaxation times (Figure 3, a). Instead,
downward deviation of another variable,i. e. downward

deviation of βHN from 1, activates fast relaxers, i. e. results

in the growth of relative contribution of fast relaxers with

short relaxation times (Figure 3, b).
Thus, the primal problem of the DS form calculation

is solved by substituting function (5) into expression (1)
for various values of αHN and βHN lying within the range

from 0 to 1 and ensuring the best agreement between

the integration result and the experiment. The inverse

problem — finding the best form of gHN(τ ) — may be

solved, for example, by repeatable solution of the primal

problem with varying the specified variables and gradual

updating their values in order to find the best agreement

between the calculations and measurements.

Figure 4 shows the influence of the variation of αHN

and βHN described above on the form of DS features.

Comparison of DS calculated using equation (1) containing

the relaxer distribution in the form of the GN function with

the Debye distribution (2) shows that the design features of

DS with comparably low time (and, accordingly, frequency)
width (τ /τHN ≈ 0.6 at αHN = 0.9, βHN ≈ 1) are shifted in

the peak into the low-frequency region by approx. 1 kHz

from point (τ /τHN) = 1 (Figure 4, a). In this case, 65%

of the relaxer array appears to be shifted towards longer

times, i. e. into the low-frequency region. At the same time,

wider design features of DS on the time (and, accordingly,
frequency) scale (τ /τHN ≈ 2.5, αHN < 0.7, 0 < βHN < 1)
are even more shifted into the low-frequency region: to

1.7 kHz from point (τ /τHN) = 1. In this case, as many

as 85% of the relaxer time array appears to be shifted

towards the longer times. This effect is associated with

inadequately quick decline of the GN function towards

longer relaxation times, i. e. this function is unproportionally

high at times longer than τHN. Variations of αHN downwards

to αHN = 0.5 and αHN = 0.3 (that may be required at the

fitting stage) result in an unacceptable result: the Debye

frequency f = 1/(2πτHN) appears to be by an order of

magnitude higher than f max of the peak of the calculated DS

features.

On the other hand, the calculations show that a decrease

in the second variable βHN at high constant value of αHN

results in drastically other calculation result. For example,

atαHN = 0.98 and βHN = 0.5 (and especially at βHN = 0.3),
the DS features calculated using equation (1) during the

integration broaden (Figure 4, b) and their peak is shifted

into the high-frequency region (short time region), rather

than into the low-frequency region, with respect to the

Debye distribution; the same also takes place for 90% of

the total relaxer array.

In view of the foregoing, an idea naturally arises to use

the simultaneous variation of both αHN and βHN to get the

Physics of the Solid State, 2024, Vol. 66, No. 5
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Figure 3. Gavrilyak−Negami functions in the linear scale gHN(τ /τHN) (a and b) and logarithmic scale gHN(log τ /τHN) (c and d) at
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best results of fitting between the design and experimental

curves. However, this method has critical disadvantage,

i. e. agreement between the calculation and experimental

data provided through simultaneous variation of αHN and

βHN is achieved for wide (twice as wide as the Debye

width) DS features at various combinations of numerical

values of these variables, which induces fitting uncertainty.

Specifically, an important question remains unanswered:

whether a particular combination of αHN and βHN and the

distribution gHN(τ ) given by it are physically justified or are

inadequate to the experimental data due to the uncertainty

mentioned above. The foregoing suggests that the above

method for solution of the inverse problem of finding the

relaxer distribution function G(τ ) through repeated solution

of the primal problem contains an ambiguity of result to be

obtained.

6. Improved GN function

Considering the foregoing, it is reasonable to address a

more advanced option to achieve the acceptable agreement

between the calculation and experiment by using an im-

proved GN function instead of G(τ ). The improvement

is reduced to multiplying function (5) by the Gaussian

exponent with introduction of two additional adjustable

variables η and γ : G(τ ) = gHN(τ ) · exp[(τ − η)2/γ2].
Such multiplication allows suppression of G(τ ) values

at high τ > τHN to ensure almost symmetrical form of

the function. For comparison, Figure 5 shows the re-
sults of calculations using equation (1) for gHN(τ ) − a)
and gHN(τ ) · exp[(τ − η)2/γ2] − b). It appears that the
use of the symmetrical form of the distribution function

G(τ ) with halfwidth τHN (τHN = 2.3 · 10−4 s, αHN = 0.6,
βHN = 1, η = τHN, γ = 0.7 · τHN) avoids the low-frequency

shift of the calculation data from point τ /τHN = 1 and
brings the calculated DS features back into the high-

frequency region and, thus, a much better agreement with

the Debye frequency f = 1/(2πτHN) is achieved for their
frequency position (Figure 5, b). However, the calculated

DS features themselves still have the same inadequately
narrow frequency range as the Debye distribution itself.

And only by means of a quite considerable expansion of
the relaxer distribution region as specified for the integration

(τHN = 2.3 · 10−4 s, αHN = 0.6, αHN = 0.1, η = 2 · τHN,
γ = 3 · τHN), a width of the DS features close to the

experimental width may be achieved through calculation.

It should be noted again that the result which is adequate
to the experiment — wide DS features and rational peak

position — has been achieved by this option using the im-
proved function G(τ ) = gHN(τ ) · exp[(τ − η)2/γ2] that dif-
fers qualitatively from the previous option G(τ ) = gHN(τ ).
This additionally confirms the conclusion that the solution

of the inverse problem of finding G(τ ) is ambiguous.
Figure 5 shows G(τ ) vs. τ /τHN and vs. log(τ ). Emphasis

shall be made on an important consideration that this

5∗ Physics of the Solid State, 2024, Vol. 66, No. 5
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Curves for the design dependences ε′′( f ) are given in comparison with the design curves according to equation (2): αHN = 1, βHN = 1.

Distribution functions are shown in the linear and logarithmic scales.

function is used not only for integration by equation (1),
but also almost coincides in form in the logarithmic scale

with the calculated frequency dependence of the imaginary

part of permittivityε′′( f ) and with the mirror reflection of

the curve relative to the horizontal axis!

This similarity has a rational explanation. In particular,

the Debye function ε′′( f ) outline, that is relatively narrow in

frequency and plays a role of the filtering function (similar

to the filtering property of the Diracδ-function) under the

integral (1), after integration using equation (1), draws the
outline of G(τ ) curve, but only in the direction mirrored

with respect to the initial direction. Mirroring occurs

because ω = 1/τ and log(τ ) = − log(ω).

7. Using modified measurements
of ε′′( f ) as G(τ )

The final construction stage of the specified mathematical

model uses an experimental data array for the values of the

imaginary part of the frequency dependence function of per-

mittivity ε′′( f ) as an option of finding G(τ ). Such method

is based on the fact that the experimental function ε′′( f )
contains concealed information on the rate of response

of the oscillation system to an external sinusoidal impact,

i. e. on the density of system relaxation time distribution

on the frequency (and, accordingly, time) scale. Hence,

after replacement of f with τ ( f = 1/2πτ ), ε′′(τ ) may

be used (after normalization) as an inoculating function

for utilization in expression (1) as G(τ ) — relaxer-time

distribution function.

The Debye function, having a low halfwidth, may be

successfully used as a filtering function, but only for

quite wide DS features compared with it. Nevertheless,

comparison of such calculation data with the experimental

data shows that the calculated peak has a lower height and

a higher frequency width than those of the experimental

peak. Therefore, correction of the relaxer-time distribution

function is required: for example, the number of low-

frequency relaxers shall be decreased and the number of

medium- and high-frequency relaxers shall be increased.

Thus, the use of the Debye function that is asymmetrical

(as opposed to the commonly used filters in the form

of symmetrical approximations to the Dirac δ-function)
requires the parameters of ε′′(τ ) = G(τ ) to be updated

when fitting to the experimental data to achieve the best

coincidence of the calculation using equation (1) with the

experimental data. The modern dielectric spectrometer

software solves this problem by numerical methods. The

required G(τ ) provided by the spectrometer looks like a

data array that may be used to plot the curves of this

function both in linear and logarithmic scales. It should be

noted again that for the DS features with wide frequency

range, the experimental function ε′′( f ) and calculated

function G(τ ) represented in the logarithmic scales almost

coincide in a mirror-like manner with each other.

8. Conclusion

Thus, the calculations performed herein suggest that

the inverse problem of finding the form of relaxer-time

distribution function G(τ ) has no unambiguous solution.

The GN function may be used as a good approximation

at the preliminary stage of finding the form of G(τ )
in expression (1) for narrow experimental DS features
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compared with the Debye distribution. For wider DS
features, an improved function (for example, gHN · exp)
must be used. And finally, for the widest DS features,
a rational result as G(τ ) is provided by the experimental
function ε′′( f ) with replacement of f with τ . After this,
ε′′(τ ) may be used as an inoculating function (6) for
expression (1) with subsequent correction of the form of
the function.
Besides the foregoing, another cause of broadening of

the DS features shall be considered, i. e. attenuation of
the relaxation oscillation amplitude in a specific physical
medium due to the loss of oscillation energy.
A set of physical reasons behind a specific form of

the experimental DS features can be certainly identified
only through in-depth interpretation of measurements with
involvement of all available additional data on the test
material: type, properties and concentration of various
impurities, degree of defects in the studied material, etc.
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