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1. Introduction

With the advent of graphene [1] vigorous search for other

2D compounds started:
”
libraries“ [2.3], databases [4–6],

roadmap [7], atlases of such materials were prepared [8].
Interest, though much lower, was also shown in 1D struc-

tures. Primarily, focus on carbyne, that had been al-

ready studied for half a century (see [9]), was certainly

enhanced. Carbyne is a one-dimensional chain of carbon

atoms. Two types of carbynes are distinguished: double-

bonded metallic cumulene (. . .=C=C=. . .) and semicon-

ducting polyyne with alternating single and triple bonds

(. . . ≡C−C≡C−C≡ . . .) [10–17]. Theoretically expected

strength, modulus of elasticity and hardness of carbynes

are higher than those of any other known material, in-

cluding diamonds, carbon nanotubes and graphene, there-

fore, new composite materials may be created. Another

actually unexamined application includes the achievement

of maximum channel width limit (thickness equal to

one carbon atom) for field transistors. Besides strength

properties, conductance of carbynes was of great interest

(see 2.2).
AB compounds IV−IV, III−V and II−VI [18–22]

and metals appeared to be the next [23,24]. Applications

of 1D materials are discussed in [23–30] (note that nanorib-

bons and nanotubes are not addressed herein). Besides

carbynes, AB, AB2 and ABC structures are discussed

herein. The last two structures that, strictly speaking, should

be referred to as quasi-one-dimensional have been chosen

according to the conclusions in [31,32] which showed

theoretically that AB2 and ABC had the highest percentage

among triatomic 2D compounds.

This study investigates thermoelectric (TE) properties of

1D structures, that, as far as known, have received almost

no attention: an exception is [33] that investigated hopping

conductivity of carbynes at high pressures and tempera-

tures. This situation seems strange because a considerable

amount of literature (see [34,35] and [36–38]) has been

published on the study of TE properties of 2D compounds.

The Seebeck coefficient S and thermoelectric power factor

PF = σ S2 of free 1D structures will be studied as TE

properties, where σ is conductivity, and potential generation

of 1D structures on striated faces of transition metals will

be discussed.

2. Free-standing 1D structures

2.1. Electronic spectrum

Let us start from ABC structure shown in Figure 1 that

may be treated as an AB chain decorated with atoms C. Let

us introduce atom Green’s functions

ga,b,c = (ω − εa,b,c + i0+)−1 (1)

respectively, for atoms A, B and C, where ω is the energy

variable, εa,b,c are energies of pz -states of atoms A, B, C.

Let us now include π-interactions t and t⊥ between atoms
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Figure 1. Schematic diagram of ABC structure. t and t⊥ are the

integrals of electronic transition between A−B and A−C atoms,

respectively (plan view).

A−B and A−C, respectively. Using the Dyson equations,

we obtain

GA0A0 = ga + gat⊥GC0A0 + gat(GB−1 + GB+1),

GC0A0 = gct⊥GA0A0, GB±1 = gbtGA0A0 + gbtGA±2A0,

(2)
GCC = gc(1− 4ga gbt2)/D, GAA = ga/D,

GBB = gb(1− ga gct2⊥)/D, (3)

where

D = 1− gagct2⊥ − 4gagbt2 cos2(ka)

or

D = (ga gbgc)
−1[�a�b�c −�bt2⊥ − 4�c t2 cos2(ka)].

(4)
Electronic spectrum of the given structures is defined is

obtained from equation D = 0, or

�a�b�c −�bt2⊥ − 4�ct2 cos2(ka) = 0. (5)

Let us now consider the solution of equation (5) for the

given structures.

1) AB structure spectrum:

t⊥ = 0, ω±(k) = ε̄ ± R(k), R(k) =
√

12 + 4t2 cos2(ka),

where

ε̄ = (εa + εb)/2, 1 = |εa − εb|/2, ω0 = εc .

2) AB2 structure spectrum:

�b = �c , R(k) =
√

12 + t2⊥ + 4t2 cos2(ka).

A flat band ω0 = εc = 0 is noted.

3) For ABC structure, a simple analytical expression for

dispersion cannot be given because three electronic bands

are the solution of cubic equation. Resulting dispersion

laws are shown in Figure 2 for the values listed in the

figure captions. It should be noted that energies of p-states
of boron atom (as atom A), nitrogen atom (as atom B) and

carbon atom (as atom C) taken from Herman−Skillman

atomic term table [39] and Mann atomic term table [40]
approximately meet the conditions used for the calculations

εa = −εb = ε, εc = 0 or equation (εa + εb)/2 = εc (see the
captions in Figure 2). The same may be said about

the atoms in columns III, V (as atoms A,B) and IV (as
atom C) that belong to the same row of the periodic

system.

For ABC structure when εc 6= 0, corrections ζi(ka) to

spectral branches to a first approximation in εc are equal to

ζi(x) = εc
y2

i − (ε2 + 4t2 cos2 x)

3y2
i − (ε2 + t2⊥ + 4t2 cos2 x)

≡ εcϕi (x),

ϕi(x) =
y2

i − 1− 4 cos2 x

3y2
i − 2− 4 cos2 x

, (6)

where x = ka , ϕi (ka) curves are shown in Figure 2, from

which it follows that the maximum values have corrections

ϕ3(ka) for a low-energy band. Consideration of non-zero

εc does not introduce any qualitative changes into ABC

band spectrum. It should be noted that spectra equivalent

to that shown in Figure 2 are also specific to adparticle-

decorated zigzag edges of graphene [41] and graphene

nanoribbons [42], and in all the cases there is a narrow

(low-disperse) low-energy branch.

Now proceed to characterization of bands of the given

structures. It is easy to show that in the vicinity of the

Brillouin zone boundary k = π/2a , energy band extrema of
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Figure 2. Band spectrum of ABC (circles), AB2 (triangles)
and AB (boxes) structures. Numbers 1 and 2 denote high-

energy bands (with positive and negative energies, respectively),
number 2 denotes low-energy bands. ABC case: εa = −εb = ε,

ε = t = t⊥ = 1, εc = 0. AB case: εa = −εb = ε, ε = t = 1,

t⊥ = 0, εc = 0. AB case: 2 : εa = ε, εb = εc = 0, ε = t = t⊥ = 1.
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Figure 3. Corrections ϕi(ka) (see (7)), where i = 1, 2, 3 to

bands i = 1, 2, 3 for ABC structure (shown in Figure 2) caused

by non-zero energy εc .

the given structures feature effective masses that are equal

to for AB biatomic chain

m1
AB = −m2

AB =
~
21

4t2a2
,

hereinafter numbering of bands and corresponding effective

masses moves down in energy. At the values assumed in

the dispersion calculation (see the caption to Figure 2),
we obtain the following values of dimensionless effec-

tive masses m∗
AB = m1

AB/me ≈ 0.94 and band parameters

Eg = 2, W =
√
12 + 4t2−1 ≈ 1.24. For the hypothetical

AB2 structure representing an AB biatomic chain, where

each atom A is decorated by atom B, we have

m1
AB2

= −m2
AB2

=
~
2
√

12 + t2⊥
4t2a2

,

so at the values assumed in the dispersion calculation, for

dimensionless effective masses, we deduce

m2
AB2

= m1
AB2

/me ≈ 1.06,

Eg = 2
√
1.25 ≈ 2.24, W =

√

12 + t2⊥ + 4t2 − 1 ≈ 1.17.

For ABC structure, we deduce

m2
ABC =

3

2 f 1

~
2R⊥

4t2a2
, m2,3

ABC = −
√
3

f 2,3

~
2R⊥

4t2a2
,

where, for the values assumed in the band calculation,

f 1 = 1.75, f 2 = 2.31, f 3 = −0.33, so the listed effective

masses are, respectively, equal to

m∗
ABC,1 = m1

ABC/me ≈ 1.14,

m∗
ABC,2 = m2

ABC/me ≈ −1.00,

m∗
ABC,3 = m3

ABC/me ≈ 6.99.

For band widths, we obtain W1 ≈ 0.92, W2 ≈ 1.35,

W3 ≈ 0.44, Wi = |y i (0) − y i(π/2)|. For direct interband

gaps we have

1↑ = ω1(π/2a) − ω3(π/2a) = 2.33,

1↓ = ω3(π/2a) − ω2(π/2a) = 0.41,

and for an indirect gap we obtain

1indir = ω1(π/2a) − ω3(0) = 1.79.

Regarding carbynes [15], for cumulene and polyyne we

have, respectively

ωcum(k) = −2t cos(ka), |kcum| ≤ π/a,

ω±
pol(k) = ±R(k), R(k) = 2t′

√

A2
1(k) + A2

2(k), (7)

where |kpol| ≤ π/2a . By projecting ωcum(k) into the

Brillouin zone of polyyne, we obtain the dispersion law

written as

ω±
cum(k) = ±2t cos(ka), |kcum| ≤ π/2a . (8)

Due to smallness of the relations (1a/a ≈ −0.03

and 1t/2t ≈ 0.03: for more details,see [15]), significant

differences in spectra (7) and (8) are observed only at

|k| → π/2a , where polyyne at |k| = π/2a in the electronic

spectrum has a gap 1pol = 2R(π/2a) = 21t ≈ 0.32 eV (this
value is in good agreement with findings obtained by other

authors, see [15]), and cumulene has no gap. It is interesting

to compare cumulene with zero-gap graphene and polyyne

with gapped graphene. Then, at the Brillouin zone edge of

cumulene (i. e. equivalent of the Dirac point of graphene),
spectrum (9) may be described by the Fermy velocities

v1D
F = ∓2ta/~ ∼ 106 m/s (9)

(estimate for π-bands, see [15]), i.e. the same result as

for graphene. Effective masses (m±
cum)∗ = ~

2/me2ta2 ≈ 0.8

may be introduced into the center of the Brillouin zone of

cumulene.

Let us now compare the spectra of polyyne and AB

structure. For cumulene with the dispersion law

ωcum(k) = −2t cos(ka), we obtain (per a spin projection)

ρcum(ω) =











1

π
√
4t2 − ω2

, ω2 ≤ 4t2,

0, ω2 > 4t2.

(10)
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For dispersion ω±
cum(k) = ±2t cos(ka) we have

ρ±
cum(ω) =











π/2∓ arcsin(ω2/4t2)

π
√
4t2 − ω2

, ω2 ≤ 4t2,

0, ω2 > 4t2.

(11)

Let us now proceed to examination of the densities of

states for AB, AB2 and ABC structures. For AB structure

with spectrum

ω±(k) = ε̄ ±
√

(12 + 2t2) + 2t2 cos(2ka),

where ε̄ = (εa + εb)/2, 1 = |εa−εb|/2, � = ω−ε̄, the

density of states is equal to

ρAB(�) =



























1

π

|�|
√

(W 2
top−�2)(�2−W 2

bot)
,

12 = W 2
bot ≤ W 2

top = �2 ≤ 12 + 4t2,

0, �2 < 12, �2 > 12 + 4t2,
(12)

where Wtop(bot) means the top(bottom) boundary of the

continuous spectrum. For AB2 structure with spectrum

ω±(k) = ε̄ ± R(k) and ω0 = 0, where

R(k) =
√

12
⊥ + 4t2 cos2(ka),

1⊥ =
√

12 + t2⊥, � = ω−εa/2

densities of states are written as ρ
(3)
AB2

(ω) = δ(ω),

ρ
(1,2)
AB2

(�) =



























1

π

|�|
√

(W 2
top−�2)(�2−W 2

bot)
,

12
⊥ = W 2

bot ≤ �2≤W 2
top = 12

⊥ + 4t2,

0, �2 < 12
⊥, �2 > 12

⊥ + 4t2.
(13)

For ABC structure, densities of states for bands 1 and 2 are

written as

ρ
(1,2)
ABC (ω) =



























1

π

|ω|
√

(W 2
top−ω2)(ω2−W 2

bot)
,

W 2
bot = ε⊥ ≤ ω2≤W 2

top = ε2⊥ + 4t2,

0, ω2 < ε2⊥, ω2 > ε2⊥ + 4t2.
(14)

It could be shown that for band 3 at t2⊥/ε
2 ≪ 1 we

approximately obtain

ρ
(3)
ABC(ω) ≈























1

π

ω2

√

Wtop − |ω|
√

|ω| −Wbot

,

Wbot ≤ |ω| ≤ Wtop,

0, |ω|<Wbot, |ω|>Wtop,

(15)

i. e. an expression similar to (10), see also, for example,

equations (10) and (12) in [40], that discussed a quasi-

one-dimensional structure — adparticle-decorated zigzag

edge of graphene nanoribbon. It should be noted that

densities of states (8)−(10) with root features are typical for

1D systems [43] (the same is applicable to equations (10)
and (12) in [41]).

2.2. Carbyne conductance

Let us start from the most extensively studied quantum

transport in carbynes. The first (according to the authors)
conductance measurements on the monoatomic chain of

carbon atoms were performed in [44]. The chains were

obtained by removal of atoms from a carbon nanoribbon

that carried electric current. Formation of chains was

followed by a typical drop of conductivity. Conductance

of chains appeared to be much lower than the expected

conductance of ideal chains. Ab initio calculations have

shown that the effect of mechanical stresses in chains on

conductance increases as the chain length grows. These

stresses may also cause cumulene transition to polyyne,

i. e. metal−semiconductor transition. According to [44],
cumulene demonstrates quantum conductance 2G0, where

conductance quantum G0 = 2e2/h (e is the elementary

charge, h is Planck’s constant) conductance of one channel

in the ballistic transport (multiplier 2 occurs due to the

presence of doubly-degenerate π-bands formed by pz

and py orbitals (the chain is extended along the x̂ axis),
that corresponds to 0.15µA at the bias voltage Vb = 0.1V.

Gap widths in the polyyne spectrum equal to 0.38 and

0.34 eV are also provided there. Similar results were

obtained in [45], where transport properties of carbon

wire
”
stretched“ between two graphene electrodes were

addressed. Conductance of insulated wire was found to

be equal to 1.06G0, and for twin wire 1.47G0 that is lower

than 2G0 due to overlapping of wave functions of adjacent

wire atoms. Calculations in [44,45] used the method of

Green’s function together with DFT (density functional

theory) [46] and the Landauer formula (see [43], Ch. 5),
according to which the current-voltage curve I−V is defined

as follows

I = G0

∫

T (ω,Vb)[ f L(ω) − f R(ω)]dω,

where f L(R) are the fermionic distribution functions on

the left (right) electrode, T (ω,Vb) is the transmission

ratio [47] at ω and Vb . Note also [48] where conductance

of short polyyne nanochains was calculated also within

the Landauer formalism. Such objects of study are

selected because only relatively short chains, e. g. polyyne

containing 44 atoms, have been synthesized until recently,

a super long 1D chain containing 6000 atoms integrated

into a double-walled carbon nanotube (CNT) has been

successfully created now [12,49]. When the chain length L
is lower than relaxation lengths in momentum Lm and

phase Lϕ , the transport is known as coherent (only elastic

scattering takes place), at L ≪ Lm, Lϕ we have the ballistic

condition; when L ≥ Lm, Lϕ , there is non-coherent transport

characterized by inelastic scattering where electron-electron

Physics of the Solid State, 2024, Vol. 66, No. 5
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and electron-phonon scattering shall be considered [50].
When interaction between carriers and the presence of

diffuser in the transport channel are considered, the problem

becomes more complicated [51].

2.3. Diffusion conductivity and thermoelectronic
properties of free-standing 1D structures

Using the kinetic Boltzmann equation in a relaxation time

approximation τ [52] and approach developed in [53–56] to
the calculation of TE properties of 2D structures, we obtain

the spectral conductance expression [52] written as

σ (µ) = e2ρ(µ)v2(µ)τ (µ), (16)

where µ is the chemical potential, e is the elementary

charge, ρ is the density of states of cumulene (in eV−1),
v is the group velocity of electron (this expression, like

the next equations in paragraph 2.3, are not applicable

to the flat band ω0 = εc = 0 that shall be addressed in a

special way [57]). To characterize thermoelectric properties,

the thermoelectric power factor is often used PF = σ S2,

where S is the Seebeck coefficient equal to

S = CS
(

d ln σ (µ, T = 0)/dµ
)

, CS = −π2k2
BT/3e, (17)

kB is the Boltzmann constant, T is the temperature.

According to (9), for cumulene vcum = 2ta/~ (for zero-gap
graphene, we have vF/

√
2, where vF is the Fermy velocity).

Thus, for cumulene Scum(µ) = 0 and PFcum(µ) = 0. For

polyyne, we obtain

v2
pol(µ) = v2

cum

(

µ2 − 12
pol

µ2

)

, µ2 > 12
pol, (18)

where Eg = 21pol = 21t ≈ 0.32 eV [15]. This expression

is equivalent to equation (4) in [54] for the gapped

graphene where, instead of v2
cum and 12

pol, v2
F/2 and 12

are used. By assuming τ (µ) = Cτ /ρ(µ) [53–56], we obtain

σ (µ) = e2v2(µ). Then from (17) and (18) it follows that

Spol(µ) = 2CS

12
pol

µ(µ2 − 12
pol)

,

PFpol(µ) = 4C2
SCτ e2

v2
cum1

4
pol

µ4(µ2 − 12
pol)

. (19)

Thus, at µ → ±1pol, Spol(µ) and PFpol(µ) have power

divergences.

Proceeding to other 1D structures addressed in para-

graph 2.1 and assuming that their diffusion conductivity is

also described by expression (16), and the dispersion law is

written as ω(k) = ±1± ~
2k2/2m, where ± are applicable,

respectively, to the conduction band and valence band, m is

the effective mass and energy is measured from the midgap

Eg = 21, for group velocity v(k) = ~k/m we obtain

v2(µ) =
2(µ ∓ 1)

m
, µ2 > 12, (20)

Then, at τ (µ) = Cτ /ρ(µ), we get

S(µ) = CS
1

µ ∓ 1
, PF(µ) = 2C2

SCτ e2
1

m(µ ∓ 1)
. (21)

Assuming τ (µ) = τ0 = const (see Appendix A in [54]),
then

S(µ) = CS

(

d ln v(µ)

dµ
+

d ln ρ(µ)

dµ

)

. (22)

Thus, divergences associated with the density of states

are added to the divergences associated with the group

velocity. Since for cumulene, the first term in (22) is

equal to zero, we obtain S(µ) = CS/2(4t2−µ2). For other

1D structures examined herein, it can be easily shown that

identical divergences of the Seebeck coefficient occur near

the boundaries of the continuous spectrum Wtop and Wbot.

The same may be also said about the thermoelectric power

factor.

3. Epitaxial 1D structures on d-metals

3.1. Experiment

A fact [58,59] of quite peculiar interaction between

adatoms on faces with strongly anisotropic atomic profile

such (112) face of BCC lattice and (110) face of FCC

lattice (e. g. W (112), Mo (112), Re (101̄0)) has been

established by the sciences of the Institute of Physics of

NAS of Ukraine more than 30 years ago. These faces are

built from parallel closely-packed rows of atoms separated

by
”
grooves“ with atomic depth (see Figure 11 in [58]

and Figures 9, 10 in [59]). On such surfaces, metal and

non-metal atoms form structures of clearly pronounced one-

dimensional nature. alkaline, alkaline-earth and rare-earth

metals were used as adatoms. To form 1D chains of atoms

with small coverage, attractive forces between adatoms in

these chains must be present. Since the abovementioned

metallic adsorbates feature significant polarity of adsorption

bond, then quite strong dipole-dipole repulsion is present

between adatoms [43]. Therefore, generation of chains

suggests that direct and indirect exchange prevails in the

interaction between adatoms [43]. Ch. 9). Thus, an attempt

may be made to generate long carbyne chains on striated

surfaces of d-metals. The same conclusion is suggested by

the history of silicene that could not be synthezied in a

free form, but whose nanoribbons were grown on (111)
Ag surface in 2012 [60]. Stabilizing effect of metallic atoms

on carbynes is also supported by calculations in [61,62].
The first of them investigates atomic structure and electron

transport properties of the carbon chain with interstitial

copper atoms (Cu-metallized carbyne) to prevent the Peierls

transition of carbyne to polyyne; as a result, the Cu-

mettalized carbyne behaves as a one-dimensional metal.

Carbyne decoration by calcium atoms was discussed in [62].
In particular, it was shown that Ca atom is bonded more

strongly with single C−C bond, rather than with triple

C≡C bond. Due to deformation induced by Ca adsorption,

6 Physics of the Solid State, 2024, Vol. 66, No. 5
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C−C and ≡C bond lengths become almost the same

(1.29 and 1.30 Å, respectively).
On the other hand, it should be noted that one-

dimensional structures were not found in the series of

papers of Ioffe Institute sciences [63–68] that studied

carbon coatings on d-metals (Ir (111) [64], Mo (100) [65],
Ta (100) [66], Re [67], Pt (111) [68]). This should come

as no surprise, since the crystal faces of d-metals used in

experiments [63–68] have no striated structure.

3.2. Epitaxial chains on d-metals: theoretical
estimations

To describe epistructures, use so-called adsorption ap-

proach [69], according to which, if Green’s function of

a free-standing structure is equal to G(ω), then Green’s

function of epistructure G̃(ω) is defined by the Dyson

equation G̃−1(ω) = G−1(ω)−6(ω), where self-energy part

6(ω) = 3(ω)−iŴ(ω), and 3(ω) and Ŵ(ω) are, respectively,
energy level shift and broadening functions of a free

structure as result of its interaction with the substrate. In this

case Ŵ(ω) = πV 2ρsub(ω), where V is the matrix element of

interaction between the epistructure and substrate, whose

density of states is equal to ρsub, and 3(ω) is the Hilbert

transform function Ŵ(ω), i. e.

3(ω) = π−1P

∞
∫

−∞

Ŵ(ω′)dω′

ω − ω′
,

where P is the symbol of the main value. For the following

analysis, density of states of the substrate shall be set.

Using the Friedel model, assume ρsub(ω) = ρd = 10/Wd

at −Wd/2 ≤ �d ≤ Wd/2 and ρsub(ω) = 0 in other cases,

where �d = ω−Ed , Wd is the conduction band width of

d-metal with center Ed (see [39]. Ch. 20). broadening

function Ŵd(ω) = πρd(ω)V 2 and shift function

3d(ω) =
Ŵd

π
ln

∣

∣

∣

∣

�d + Wd/2

�d −Wd/2

∣

∣

∣

∣

, (23)

where Ŵd = πρdV 2. Now, in expressions (10)−(15) for

densities of states of free 1D structures we shall replace ω

with ω̃ = ω−3d(ω) and in expressions (18)−(22) for v(µ)
and ρ(µ) we shall replace µ with µ̃ = µ−3d(µ), that of

course shifts the poles. Here, for order of magnitude

estimates, we assume a so-called wide band approximation,

when Wd → ∞ is assumed (for 5d-metals Wd ∼ 10 eV), that
gives 3d(ω) = 0 [43, Ch. 8]. Let us now estimate charge Z0

of a singe adatom, from which the epitaxial chain is built

using the equation

Z0 =
2

π
arctan

εa − EF

Ŵd
, (24)

where εa is the energy of orbital that acts in adsorption

and is initially filled by one electron, EF is the Fermi

energy [43, Ch. 8]. Implying the carbon adatom, replace

εa−EF with work function difference of carbon structures

and d-metal ϕC−ϕd . Such procedure is possible because

graphene and graphite have the same work functions

ϕC = 4.50 eV [70], work functions of the monolayer and

double-layer graphene also have a little difference [71].
Therefore, for estimates, we assume ϕC = 4.50 eV also for

the carbon chain. For Mo (112) ϕd = 4.36−4.53 [72], for
W (112) ϕd ≈ 4.7 eV [73,74]. According to [39] (Ch. 19),
the matrix element that binds p-states of carbon with

d-states of metal substrate V = Vpdσ = 2.95(~2r3/2d /md7/2)
for σ -bond, rd is the radius of d-shell equal to

(1.27 and 1.20 Å) for W and Mo, respectively. Assuming

the adsorption bond length d ∼ 2.5 Å, we get Vpdσ ∼ 1 eV,

so Ŵd ∼ 3 eV (for σ -bond). Then from (24) it follows

that|Z0| ≪ 1. Providing that carbon atoms in the chain are

bonded through direct exchange t and are spaced at a , then
the chain is stable, when the Coulomb repulsion energy of

adjacent adatoms UC =
Z2

a e2

a is lower than their bond energy

Ubind = 2t/3, where t = ηs p(~
2/ma2) and for σ -bond of

s p-orbitals ηs p = 3.19 [76], hence, we obtain Z2
0 < 1/a ,

where a is measured in Å. The same chain stability

condition may be also written for indirect interaction of

adjacent adatoms ([43], Ch. 9).
In addition, consider the effect of electron-electron

repulsion of adjacent atoms in the chain Gn jn j±1, where

nJ ∼ 1, because |Z j | ≪ 1, where j is the atom number in

the chain. Ch. 9 [43] and [77] show that in certain conditions

of a chain with uniform distribution of electrons over atoms

it is favorable to change to a state with a charge-density

wave due to interatomic transfer of electrons, when the

occupation numbers of adjacent atoms are n j = 1 + δn,
n j±1 = 1−δn, so attraction occurs between them that

reduces the chain energy by G(δn)2. While the chain

stability certainly increases.

It should be also noted that when the dipole-dipole

repulsion in chain and in other structures is considered

(dipoles are formed by adatoms and their images in metal),
depolarization of adatoms takes place, i. e. decrease of

charge of adatoms ([43], Ch. 9).

3.3. Estimation of thermoelectric properties
of epitaxial chains

For the epitaxial cumulene, the density of states

ρ̃(ω) =
Ŵ

π

π/2
∫

0

d(ka)
(

ω − 2t cos(ka)
)2

+ Ŵ2
, (25)

hence, the maximum value is ρ̃cum = 1/πŴ (it can be shown

that

ρ̃cum(0) = (4t2 + Ŵ2)−1/2

and

ρcum(±2t) ∼ Ŵ/π(4t2 + Ŵ2).

Thus, divergences of conductance (16) and thermoelec-

tronic properties Scum(µ) and PFcum(µ) associated with the
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features of densities of states in relaxation time approxi-

mation by constant (the second term in expression (22)),
are absent in epistructures on d-metals in a wide band

approximation. However, features associated with group

velocity (18), (20), (22) are still exhibited. Therefore, the

effect of substrate on the group velocity determined for the

first time for graphene in [78] and for carbyne in [77] shall
be considered. According to these papers

ṽ(µ)/v(µ) = F(µ), F(µ) =
(

1−
(

d3(µ)/dµ
))−1

. (26)

Thus, in a wide band approximation, we have

ṽ(µ)/v(µ) = 1. While in the Friedel model from (23) we

obtain

F(µ) =

(

1 +
Ŵd

π

Wd

(Wd/2)2 − (µ − Ed)2

)−1

. (27)

Relations of effective masses for epitaxial and free structures

m̃∗/m∗ = F(ωextr), where ωextr is the energy of extremum

for which effective masses were determined. More detailed

discussions of dependences (26), (27) (in particular, thresh-

old µ → Ed ±Wd/2) are described in [78,77].

From equations (19) and (26) it follows that for cumu-

lene, polyyne and other 1D structures addressed herein, the

following relations are valid

S̃(µ)/S(µ) = 1 and
(

PF(µ)
)

epi
/
(

PF(µ)
)

free
= F2(µ).

(28)

4. Conclusion

This study uses the tight-binding approximation and

Green’s functions to derive analytical expressions for elec-

tronic spectrum properties (dispersion and effective carrier

masses) for five one-dimensional free structures and to

show that densities of states of all given structures ρ

are characterized by root divergence when the chemical

potential approaches the continuous spectrum boundaries

of these structures. Assuming that relaxation time τ ∝ ρ−1,

spectral conductance σ (µ) ∝ v2(µ), where v is the group

velocity of electron (such proportion is specific to the kinetic

Boltzmann equation), simple analytical expressions were

obtained for the Seebeck coefficient S(µ) and thermoelectric

power factor PF(µ) of free 1D structures.

Transition to epitaxial structures is preceded by a sum-

mary of the available experimental data on generation

of chains on striated faces of transition metals. Simple

theoretical estimates have shown that such chains built

from carbon atoms (i. e. carbines) shall be stable. It has

been also shown that the presence of d-substrate changes

ρ, v, s and PF .

Interest in extreme values of thermoelectric properties

is induced by search for materials and structures having

ZT > 1 (known as figure of merit in English literature),
where Z = σ S2/κ, κ is the heat capacity [79].
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