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Dynamic statistical sum and temperature of an isolated body
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Analysis of the thermoelastic Joule−Thomson effect indicates the need to separate the total energy of an isolated

body into two components — the quasi-static energy of elastic deformation, which includes thermal expansion, and

the energy of atomic vibrations. A dynamic statistical sum is proposed as an analysis tool, which allows one to

calculate the average values of observed values over a long period of time, including in the presence of external

time-dependent forces. Based on the fact that, in accordance with the ergodic hypothesis, the limit of the dynamic

statistical distribution for an isolated body is the microcanonical distribution, and for its subsystems the canonical

Gibbs distribution, a definition of the temperature of an isolated body is proposed. The energy balance in the

thermoelastic effect is in full accordance with the first law of thermodynamics for an isolated body.
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1. Introduction

Thermoelastic effect was detected and discussed in classi-

cal studies performed by Joule and Thomson [1,2]. Having
a long history, it is currently of interest [3–8]. The effect

is defined by low temperature variation of an adiabatically

isolated body in uniaxial mechanical deformation and is

described by the following empirical equation

1T
T

= −ασ

cρ
, (1)

where α is the linear thermal expansion coefficient, c is

the specific heat capacity, ρ is the density of the body, σ

is the mechanical stress. It shall be primarily emphasized

that in tension (σ > 0) the absolute temperature decreases

(1T < 0 for most of the bodies). It should be also noted

that the effect itself is obviously a sign of nonlinearity of

interatomic forces (anharmonicity) which is shown by the

thermal axpansion coefficient in (1) (see [9]).
In [10], for the simplest anharmonic solid body model —

anharmonic oscillator, dynamic explanation is proposed for

the thermoelastic effect that is based on the adiabatic

invariant in the oscillator dynamics [11]:

I =
E
ω

(2)

with its slow deformation. Oscillation frequency variation ω

in this case is a result of anharmonicity [10]:

1ω

ω
≈ −gF

f 2
. (3)

Here f and g are elastic and anharmonic constants of the

oscillator potential, F is the external force. It is shown that

empiric equation (1) may be explained by relation (3), if
it is naturally assumed that temperature T is proportional

to oscillation energy E . Thus, in tension (F > 0), the

oscillation energy (temperature) decreases. In this case,

the mean potential energy (and full energy) of oscillator

grows at any sign of the external force F . This ensures

fulfilment of the law of conservation of energy when it

seems to be violated in case of tension. This suggests

that the temperature of body is associated only with that

part of the total energy that may be called the oscillation

energy Wosc. The second part of the total energy is the

elastic strain energy of the body Uo that, as a consequence

of anharmonicity, is non-zero even in the absence of external

forces (thermal pressure, [12]). A general definition of these

energy components and temperature of the anharmonic

solid body will be proposed herein. Since the thermoelastic

effect has a dynamic nature [10], a dynamic partition

function will serve as the main analysis tool.

2. Dynamic statistical sum

For simplicity, the analysis will be limited by a one-

dimensional solid body model — atomic chain with the

Hamilton function

H(p, x) =

N
∑

n=1

p2
n

2mn
+ U(x) −

N
∑

n=1

Fnxn, (4)

U(x) =
1

2

N
∑

l,n=1

f nlxnx l −
1

3

N
∑

knl

gknlx k xnx l, (5)

where f nl , gknl are symmetrical matrices of force constants,

Fn is the force applied to the n-th atom (force field

component). For simplicity, we are limited by the cubic
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anharmonicity. The way how to consider higher orders

of expansion of potential energy will be described below.

f nl , gknl matrices are such that U(x) depends only on

the difference of coordinates, thus, the potential energy

is invariant with respect to shift along the 0x axis. The

resultant force applied to the chain is considered to be

equal to zero and its center of mass is at rest. Our purely

dynamic consideration allows dependence of forces on time,

but within a limited range or with a limited period. In this

case, it is possible to determine the any average value of

A(t) within a long time period

〈A〉 ≡ 1

t

t
∫

0

A(τ )dτ . (6)

We will be primarily interested in average coordinates

and atom pulses for which we will introduce a generating

function

Z(α, β) =
1

t

t
∫

0

exp

{

N
∑

n=1

[αnxn(τ ) + βn pn(τ )]

}

dτ . (7)

Coordinates obey the equations of motion

mnẍn +

N
∑

l=1

f nlx l −
N

∑

kl

gknlx k x l − Fn ≡ Xn(τ ) = 0. (8)

This will be explicitly considered in generating func-

tion (7) using the additional functional integration of

δ-function

Z(α, β) =
1

t

t
∫

0

dτ
∫

∏

τ ′

dNx(τ ′)δ
(

X(τ ′)
)

× exp

{

N
∑

n=1

[

αT xn(τ ) + βn pn(τ )
]

}

, (9)

where pn = mnẋn. This function is the sought-for dynamic

partition function of chain. We can advance in functional

integration using the integral representation of δ-function

δ
(

X(τ )
)

=

∞
∫

−∞

∏

τ ′

1

2π
dNλ(τ ′)

× exp

[

i

τ
∫

0

N
∑

n

λn(τ
′)Xn(τ

′)dτ ′

]

. (10)

Integrating by parts in the exponent in (10), we obtain

In ≡
τ

∫

0

λn(τ
′)Xn(τ

′)dτ ′ = mnλnẋn

∣

∣

τ
0 − mnλ̇nxn

∣

∣

τ

0

+

τ
∫

0

dτ ′

(

λ̈nxn + λn

N
∑

l=1

f nlx l − λn

N
∑

kl

gknlx kx l − λnFn

)

.

(11)

After this transformation, we will be able to take the

functional integral overxn(τ ) in (9):

∫

∏

τ ′

dNx(τ ′)δ(X(τ ′)) =

∫

∏

τ ′

dNλ(τ ′)
1√
detG

exp(1)

× exp

{

i
N

∑

n

[

mn
(

λ̇n(0)xn(0) − λn(0)ẋn(0)
)]

}

× δN(α − imλ(τ ))δN
(

β + iλ(τ )
)

,

(12)
where

1 =
i
4

τ
∫

0

dτ ′

N
∑

nk

G−1
nk 3n3k −

N
∑

n

Fn(τ )λn(τ ), (13)

Gkn ≡
N

∑

l

λlg lkn, (14)

3n ≡ λ̈n +

N
∑

l=1

λl f nl . (15)

We omitted constant multipliers in expression (12) that

are insignificant for determination of the partition func-

tion. The initial conditions xn(0), ẋn(0) define the initial

energy Wo of the body. Thus, relation between the dynamic

variables xn(τ ), pn(τ ) and their initial values was estab-

lished. It is contained in δ-functions in (12) (iλ(τ ), miλ(τ )).
It can be easily seen that the Wick rotation λ → −iλ makes

the last functional integral in (12) well converging and

explicitly real. If the examined system is ergodic [13],
partition function (9) does not depend on initial conditions

on the initial energy surface Wo = const. Here, the dynamic

partition function calculation has also approached the place

where the role of anharmonicity in the system ergodicity

is clearly seen. representation (12) of dynamic part of the

partition function (9) makes sense if matrix (14) formed

from the cubic anharmonicity coefficients gnlk has a non-

zero determinant. It this matrix is degenerate, a part

of degrees of freedom is harmonic and does not satisfy

the Birkhoff theorem conditions [14] for ergodic systems.

To consider the higher orders of anharmonicity in this

representation, the perturbation theory rules shall be used

by expanding the exponent under the integral sign (10)
as a power series in higher order constnats. The next

step in the dynamic partition function calculation may be

the use of a stationary phase for evaluation of the integral

over λ in (12). To define the concept of temperature, it id

sufficient here to assume that anharmonicity ensures system

ergodicity.

3. Temperature of an isolated body

Since we correlate the temperature of the body with the

atom vibration energy Wosc, this quantity will be defined

in general. For this, quasistatic potential energy of elastic
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strain of the body Uo will be defined. Recall that this strain

in the anharmonic system is also present when there are

no external forces (thermal expansion [9]). Let us first

find average coordinates of atoms within a long time period

using generating function (9):

〈xn〉 ≡
∂ lnZ(αβ)

∂an

∣

∣

∣

∣

α,β=0

. (16)

We substitute these average values into the potential

energy of the body and obtain

Uo = U(〈xn〉). (17)

This quantity obviously depends on the total energy of the

body and on external forces: Uo = Uo(W, F). The remaining

part of the total energy falls on the oscillation energy

Wosc = W −Uo(W, F), (18)

this part also depends on the (initial) total energy and

external force field: Wosc = Wosc(Wo, F). This dependence

constitutes justification of the thermoelastic effect. It is

only left to find the correlation between temperature and

oscillation energy. The isolated body temperature initially

bears the stamp of uncertainty because the concepts of

”
warm“ and

”
cold“ make sense only when the bodies

are in contact. If the anharmonicity is neglected, we can

use the law of equipartition of energy according to which

energy kBT corresponds
”
on average“ to one oscillation

degree of freedom. This law was formulated and proved

using the Gibbs distribution for the harmonic oscillator

assembly that are in contact with the thermostat. Such

definition of temperature is assumed in [10] and it appears

to be quite sufficient for explanation of the thermoelastic

effect. It is, however, assumed that the contact between

the body and thermostat avoids any thermomechanical

effects and an alternative explanation shall be sough for

in the thermomechanics of an isolated body. Here, as

we have seen, the anharmonicity is a significant factor

that ensures ergodicity of the system. According to the

ergodic hypothesis, dynamic partition function (9) at t → ∞
coincides with the microcanonical Gibbs distribution (see
also [15]). In this case, for any small subsystem of a large

isolated body the Boltzmann distribution is fulfilled with

high accuracy [16]:

p(W ′) ∝ exp

(

− w ′

kBT

)

, (19)

where W ′ is the subsystem (vibration) energy. In other

words, the large isolated body is a thermostat with a

particular temperature for its subsystems. To determine

the total temperature of the body, we use equation (19)
as reference for its parts. Considering the microcanonical

distribution to be valid for the body vibration energy

individually,

ρ = const · δ
(

Wosc −
∑

W ′

)

, (20)

we derive equation [15]:

1

kBT
=

∂ lnZ
∂Wosc

∣

∣

∣

∣

α,β=0

(21)

The use of this equation in case of microcanonical

distribution for the harmonic oscillator assembly gives

the expected result — vibration energy distribution law:

kBT = Wosc/N.

4. Conclusion

Finally, we will draw the energy balance in the

Joule−Thomson thermoelastic effect. According to the first

onset for the isolated body, the work of external force is

fully expended on the augmentation of its (full) internal

energy. More precisely, according to our construction,

the quasistatic potential energy (elastic strain energy) of

the body Uo increases. In tension, it is supplemented by

(with plus sign) by the work of thermal pressure forces,

so the increase of Uo is a little higher than the purely

mechanical work. The energy balance is restored exactly

due to the thermoelastic effect — decrease of the vibration

energy Wosc and the related temperature. Thus, the work of

thermal pressure forces is a dynamic effect that restores

the energy balance in the parametric reduction of the

anharmonic ocsillator energy that is discussed in [10].
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