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Strong elasticity anisotropy for disordered cubic titanium monoxide TiOy
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The elastic constants c11, c12, c44 are estimated for the first time as functions of the oxygen content y in the

homogeneity region TiO0.80−TiO1.25 of disordered cubic TiOy titanium monoxide. The elastic stiffness constants

c i j of disordered TiOy increase with a rise in the relative oxygen content y . The values of elastic moduli depend

on the crystallographic [hkl] direction. Large changes in the elastic characteristics of TiOy depending on the [hkl]
direction indicate a strong anisotropy of the elastic properties of disordered TiOy . Titanium monoxide TiOy has a

much greater anisotropy of elastic properties than the related cubic titanium carbide TiCy . Disordered TiOy exhibits

mechanical stability over the entire homogeneity region. Based on the ratio of the bulk modulus B and shear

modulus G, polycrystalline TiOy can be considered as a ductile material. The calculated Debye temperature of

polycrystalline cubic TiOy increases non-linearly with a rise in the relative oxygen content y .
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1. Introduction

Disordered cubic TiOy and TiCy with B1 type basis

structures are related nonstoichiometric interstitial titanium

compounds. The difference between them is caused by

structural vacancies (unoccupied by lattice site atoms)
present simultaneously in the non-metal and metal sub-

lattices of titanium monoxide, while in titanium carbide,

vacancies are only present in the non-metal sublattice [1].
Due to the double faultiness of TiOy and single faultiness

of TiCy , these compounds, other things being equal, will

have different densities of atomic packing that shall result in

difference in their anisotropy. Elastic anisotropy analysis of

disordered cubic TiCy in [2] has shown that titanium carbide

has weak anisotropy that grows a little with increasing

faultiness of the carbon sublattice, but remains negligible

even on the lower boundary of its homogeneity region

TiC0.50. The study will investigate the anisotropy of

disordered cubic TiOy in its homogeneity region.

Cubic (space group Fm3̄m) TiOy with B1 type basis

structure has one of the widest homogeneity regions

(from TiO0.80 to TiO1.25 at ∼ 1273K) among nonsto-

ichiometric cubic monoxides and monocarbides [1,3–6].
The composition of titanium monoxide with contained

structural vacancies in each of the sublattices is written as

TixOz ≡ TiOy or Tix�1−xOz �1−z ≡ TiOy , where y = z/x ,
� and � are structural vacancies of non-metal (oxygen)
and metal (titanium) sublattices, respectively. Titanium

monoxide, that formally has a stoichiometric equiatomic

composition TiO1.0, contains 16.7 at.% of vacancies per tita-

nium and oxygen sublattices, therefore its real composition,

including the sublattice faults, is Ti0.833O0.833 [3,7].

In disordered state, atoms and structural vacancies are

distributed randomly over the sites of each of TixOz

sublattices, but the cubic symmetry of each sublattice is

maintained, because the probability of detecting an atom

on all sites of its own sublattice is the same and coincides

with the relative content of occupied sublattice sites, i. e.

is equal to x for the titanium sublattice and to z for the

oxygen sublattice.

Depending on the content of oxygen and thermal treat-

ment conditions, distribution of atoms and vacancies in the

crystal lattice of TiOy may be disordered or ordered. Disor-

dered condition of titanium monoxide is thermodynamically

stable at T > 1600K, while several ordered phases of

different types and symmetries occur at a temperature

below 1500K in different concentration and temperature

ranges [1,8,9]. A monoclinic (sp. gr. C2/m) phase Ti5�O5�

is the main ordered phase of nonstoichiometric cubictita-

nium titanium monoxide.

All properties of titanium monoxide depend on a relative

oxygen content and vary significantly within its homo-

geneity range. Lattice constant of disordered cubic TiOy

decreases smoothly with the growth of the relative oxygen

content y [8] According to [6,10–13], all disordered titanium

monoxides have low specific resistance. Depending on the

oxygen content, the specific resistance of disordered TiOy

with y ≤ 1.0 slowly grows with temperature, and decreases

when y > 1.0; thus, TiOy have electronic conductivity with

low oxygen content y ≤ 1.0 and behave as narrow-gap semi-

conductors or insulators at a higher oxygen content y > 1.0.

Specific heat capacity of disordered nonstoichiometric TiOy

(0.81 ≤ y ≤ 1.26) grows with relative oxygen content y
throughout the homogeneity region of the cubic phase [14].
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Table 1. Theoretical elastic constants c i j , bulk modulus B
and shear modulus G of equiatomic quasi-stoichiometric TiO1.00

c11 , c12, c44, B , G,
Approximation Ref.

GPa GPa GPa GPa GPa

693 73 130 280 − LDA 16

517.2 71.3 36.2 220.0 222.5 GGA 17

650 72 145 270 − TBPM∗ 18

612 129 123 249.8 241.5 LDA 19

511 53 31 205 78 GGA 20

∗ three-body potential model.

Data on the stress-strain properties of cubic titanium

monoxide are limited by microhardness measurements on

quenched TiOy samples within 0.92 ≤ y ≤ 1.26 [15], where

nonlinear microhardness growth is observed as y increases.

Utilization of disordered titanium monoxide is associated

with its stress-strain properties. Variation of the titanium

monoxide nonstoichiometry is one of the ways to control

elastic properties. However, no experimental data on the

elastic properties of disordered cubic TiOy depending on

the oxygen content are reported in the literature.

Theoretical calculations of elastic response are reported

only for equiatomic quasi-stoichiometric TiO1.00. Theoretical

estimates of the elastic properties have been generally

made in different density functional theory (DFT) versions

with local density approximation (LDA) and generalized

gradient approximation (GGA) for exchange-correlation

potentials at 0K. Elastic stiffness constants c i j and elastic

moduli of equiatomic quasi-stoichiometric TiO1.00 calculated

in [16–20] are listed in Table 1.

Ab initio calculations by the DFT method were used

in [20] to study, besides cubic (sp. gr. Fm3̄m) equiatomic

TiO, the elastic anisotropy of TiO2, Ti2O3, Ti3O and Ti3O5.

According to [20], cubic TiO has the highest elastic

anisotropy compared with other examined titanium oxides.

According to the theoretical data in [16–20], cubic TiO

has highly pronounced elastic anisotropy.

The elastic stiffness constant matrix of cubic crystals

includes 3 independent elastic constants — c11, c12 and c44,

and the elastic compliance constant matrix s i j includes three

constant: s11, s12 and s44. To consider the elastic anisotropy

of nonstoichiometric cubic TiOy , it is important to know

how elastic constants c11, c12 and c44 or s11, s12 and s44
vary depending on the relative oxygen content y . Therefore,
the experimental microhardness data reported in [15] for

disordered nonstoichiometric TiOy with different oxygen

content will be used herein for quantitative analysis of the

elastic constants of nonstoichiometric TiOy and for elastic

anisotropy estimation. To compare the elastic anisotropy of

disordered TiOy , related disordered cubic TiCy will be used.

2. Findings and discussion

2.1. Elastic constants of titanium monoxide

Hardness study of carbides, nitrides and other com-

pounds [21] has identified a general downward trend of

their hardness HV as the shear modulus G and uniform

compression modulus B decrease. According to [21,22], the
dependence of microhardness on shear modulus for nonsto-

ichiometric compounds is written as HV (y) = 0.151G(y).
This function allows the shear modulus G(y) to be found

depending on the composition of disordered TiOy according

to the data reported in [15] on its microhardness varia-

tion as

G(y) = HV (y)/0.151. (1)

The quantitative analysis has shown that the shear

modulusGy=1 of stoichiometric TiO1.00 is equal to 77.4 GPa,

and the concentration dependence G(y) of disordered TiOy

is written as

G(y) = Gy=1(−3.23902 + 7.17183y − 2.93282y2)

± 10.0GPa. (2)

The concentration dependences of microhardness HV (y)
and shear modulus G(y) of disordered TiOy allow the

concentration dependence of bulk modulus B(y) to be

found using the empiric function HV = [2(k2G)0.585−3]
proposed in [23]. It follows from this function that

B(y) = [G(y)]3/2/
[(

HV (y) + 3
)

/2
]1.17

. (3)

Dependence of the bulk modulus B of disordered TiOy

calculated using relation (3) from HV (y) of quenched TiO

microhardness [15] using the found quantitative dependence

G(y) (2) is written as

B(y) = By=1(−2.60339 + 6.11632y − 2.51292y2)

± 10.0GPa. (4)

According to the calculation, the bulk modulus By=1 of

stoichiometric TiO1.00 is equal to 123.8 GPa.

To pass from the found quantitative dependences of

G(y) and B(y) of titanium monoxide to its elastic stiffness

constants c11, c12 and c44, an approach is further used as

proposed and developed in [22] for nonstoichiometry and

elastic properties of cubic TiCy .

The bulk modulus of isotropic cubic crystals is correlated

to the elastic stiffness constants through a simple relation

B = (c11 + 2c12)/3 [24,25]. To a first approximation,

dependence B(y) of TiOy single-crystal particles on the

relative oxygen content y is the same as B(y) (4) found

using the experimental data [15] on microhardness HV (y).
Therefore,

(c11+2c12)/3=By=1(−2.60339+6.11632y−2.51292y2).
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Table 2. Elastic stiffness constants c i j elastic compliance constants s i j and elastic anisotropy criterium Aan of disordered cubic TiOy

y c11, GPa c12, GPa c44 , GPa s11, Pa
−1 s12 , Pa

−1 s44, Pa
−14 Aan

0.80 348.2 36.1 19.3 2.929 · 10−12
−0.275 · 10−12 51.91 · 10−12 0.124

0.85 398.5 41.3 22.9 2.559 · 10−12
−0.240 · 10−12 43.71 · 10−12 0.128

0.90 442.4 45.9 26.0 2.305 · 10−12
−0.217 · 10−12 38.40 · 10−12 0.131

0.95 479.9 49.8 28.7 2.125 · 10−12
−0.200 · 10−12 34.79 · 10−12 0.134

1.00 511.0 53.0 31.0 1.996 · 10−12
−0.188 · 10−12 32.26 · 10−12 0.135

1.05 535.7 55.6 32.8 1.904 · 10−12
−0.179 · 10−12 30.49 · 10−12 0.137

1.10 553.9 57.4 34.1 1.841 · 10−12
−0.173 · 10−12 29.29 · 10−12 0.138

1.15 565.7 58.7 35.0 1.803 · 10−12
−0.169 · 10−12 28.55 · 10−12 0.138

1.20 571.1 59.2 35.5 1.786 · 10−12
−0.168 · 10−12 28.20 · 10−12 0.139

1.25 570.1 59.1 35.4 1.789 · 10−12
−0.168 · 10−12 28.22 · 10−12 0.139

Comparison of moduli B and G of quasi-stoichiometric

TiO1.00 theoretically calculated in [16–20] with

Gy=1 = 77.4GPa and By=1 = 123.8GPa found herein

shows that the theoretical values of Gcalc,y=1 = 78GPa

and Bcalc,y=1 = 205GPa of quasi-stoichiometric TiO1.00

calculated in [20] are the nearest to our estimated

valuesGy=1 and By=1. Considering the data [20] on

elastic moduli Bcalc,y=1 = 205GPa and Gcalc,y=1 = 78GPa

and elastic constants c11 = 511, c12 = 53 and c44 = 31GPa

of equiatomic stoichiometric titanium monoxide, the

following relations may be established between the

theoretical elastic constants c i j(y = 1) and theoretical bulk

and shear moduli of stoichiometric TiO1.00 as reported

in [20]
c11(y = 1) = 2.49268Bcalc,y=1,

c12(y = 1) = 0.25854calc,y=1

and

c44(y = 1) = 0.39744Gcalc,y=1.

Disordered cubic TiCyhas been previously used [2,22] to

illustrated that dependences of elastic constants c11 and c12

on the composition of the nonstoichiometric compound are

qualitatively identical. In view of this, c11(y) and c12(y) as

functions of the composition of disordered TiOy are writ-

ten as

c11(y) = c11(y = 1)(−2.60339 + 6.11632y − 2.51292y2),
(5a)

c12(y) = c12(y = 1)(−2.60339 + 6.11632y − 2.51292y2),
(5b)

where c11(y = 1) = 511GPa and c12(y = 1) = 53GPa.

According to [26], the shear modulus of isotropic cubic

crystals is correlated to c44 as G = c44. It is reported

in [16] that cubic crystal resistance to shear distortions

is more accurately characterized by two moduli: c44

and c ′ = (c11−c12)/2. c44 is related to orthorhombic strain,

while c ′ is related to tetragonal strain. The calculated

variation of G(y) (2) from TiOy composition is the

averaged concentration dependence of the shear modulus,

because it has been obtained using the dependence HV (y)
of TiOymicrohardness [15] measured on polycrystalline

titanium monoxide samples. Therefore, Gy=1 = c44(y = 1)
and c44(y) of TiOy single-crystal particles on the oxygen

content y as function of the composition of disordered TiOy

is written as

c44(y) = c44(y =1)(−3.23902+7.17183y−2.93282y2),
(5c)

where c44(y = 1) = 31GPa.

c i j are directly related to the mechanical stability of the

given phase. The phase is generally mechanically stable,

if it satisfies Born’s criteria reported in [24,27] and the

necessary and sufficient conditions of elastic stability of

different crystal systems described in [28,29]. The general

necessary and sufficient stability criterium is in the fact that

all eigenvalues of the elastic stiffness constant matrix shall

be positive. The elastic matrix of cubic crystals includes

a total of 3 independent positive elastic stiffness constants

c11, c12 and c44, and the mechanical stability conditions of

cubic crystals are written simply as

c11 > c12, c44 > 0, c11 + 2c12 > 0. (6)

Relations between c11, c12, c44 and s11, s12, s44 of cubic

crystals [25] are described as

s11 = (c11 + c12)/[(c11 − c12)(c11 + 2c12)],

s12 = −c12/[(c11 − c12)(c11 + 2c12)], s44 = 1/c44. (7)

c i j and s i j of disordered cubic TiOy with different com-

positions as estimated using (5) and (7) are listed in Table 2.

It is apparent that mechanical stability condition (6) is

satisfied for disordered cubic TiOy in its homogeneity region.
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2.2. Elastic anisotropy of disordered cubic TiOy

According to the elasticity theory, cubic crystals have elas-

tic anisotropy. In particular, [30] reports the dependences of

Young’s modulus Ehkl , Poison’s ratio µhkl and shear modulus

Ghkl of cubic crystals on crystallographic direction [hkl] that
show their anisotropy. These elastic properties of cubic

crystals considering the anisotropy factor Ŵ are functions

of c11, c12 and c44 and are written as [30]:

Ehkl =
(c11 − c12)(c11 + 2c12)c44

(c11 + c12)c44 − (2c44 − c11 + c12)(c11 + 2c12)Ŵ
,

(8)

µhkl = 1/2−
Ehkl

2(c11 + 2c12)
, (9)

Ghkl =
2(c11 − c12)c44

4c44 − 6(244 − c11 + c12)Ŵ
. (10)

In equations (8)−(10), Ŵ is an anisotropy factor of cubic

crystals equal to

Ŵ =
h2k2 + h2l2 + k2l2

(h2 + k2 + l2)2
[30].

The bulk modulus B of cubic crystals does not depend on

direction [hkl] and is equal to

B = (c11 + 2c12)/3. (11)

The calculated c i j(y) (5) of disordered cubic TiOy and

quantitative data on c11, c12, c44 and s11, s12, s44 of titanium
monoxide with different relative oxygen content y (see Ta-

ble 2) were used for calculation using equations (8)−(11)
for distribution of elastic properties of single-crystal cubic

TiOy depending on direction [hkl] and relative oxygen con-

tent y . Figure 1 shows the plotted distributions of Young’s

modulus Ehkl(y) and shear modulus Ghkl(y) in (100) plane

of cubic TiOy with different relative oxygen contents y .
Poison’s ratio µhkl(y) of titanium monoxide depends only

tenuously on y , therefore, its distribution is shown only for

y = 0.8 and 1.0 (see Figure 1). Due to cubic symmetry

of titanium monoxide, distributions of its elastic properties

Ehkl(y), Ghkl(y) and µhkl(y) in (010) and (001) planes are

the same as in (100) plane.

Young’s modulus Ehk0 of TiO0.80 corresponding to the

lower boundary of the homogeneity region of the dis-

ordered cubic phase in (100) plane varies from ∼ 341

to ∼ 70GPa. For equiatomic TiO1.00, Young’s modulus

varies from ∼ 499 to ∼ 111GPa and for TiO1.20 —
from ∼ 558 to ∼ 128GPa (Figure 1). The maximum and

minimum values of Ghk0 vary from ∼ 156 to ∼ 25GPa for

TiO0.80, from ∼ 229 to ∼ 39GPa for equiatomic TiO1.00 and

from ∼ 256 to ∼ 45GPa for TiO1.20 (see Figure 1). Poison’s
ratio µ in (100) plane of titanium monoxides depending on

direction [hkl] varies from ∼ 0.094 to ∼ 0.417 and almost

does not depend on the composition of TiOy (see Figure 1).
Bulk modulus B of cubic titanium monoxide does not

depend on direction [hkl] and has a spherical shape, B

of TiO0.80, TiO1.00 and TiO1.20 is equal to ∼ 194, ∼ 217

and ∼ 230GPa, respectively. Large changes of Ehk0, Ghk0

and µhk0 from direction [hkl] indicate high elastic anisotropy

of disordered cubic TiOy with any relative oxygen content y
in its homogeneity region.

Spatial 3D distributions of Ehkl and Bhkl of disordered

cubic TiO0.80, TiO1.00 and TiO1.20 with different relative

oxygen content y are shown in Figure 2. TiO0.80

corresponds to the lower boundary of the homogeneity

region and has the lowest c11, c12 and c44, and TiO1.20

composition almost achieves the upper boundary of the

homogeneity region and is distinguished by the highest

values of c11, c12 and c44 (see Table 2). Equiatomic

TiO1.00 occupies an intermediate position between TiO0.80

and TiO1.20. For all titanium monoxides, the highest Emax is

observed along one of the crystallographic axes [00± 1],
[0± 10] or [±100]. The lowest Emin is observed in

eight equivalent directions [±1± 1± 1]. The highest and

lowest Young’s moduli of TiO0.80, TiO1.00 and TiO1.20

are equal to ∼ 341 and ∼ 67, ∼ 499 and ∼ 109, ∼ 558

and ∼ 125GPa, respectively (see Figure 2, a). Values of

Bhkl of TiO0.80, TiO1.00 and TiO1.20 are equal to ∼ 194,

∼ 217 and ∼ 230GPa, respectively, Bhkl have spherical

shape and do not depend on direction [hkl] (see Figure 2, b).
For comparison, Figure 3 shows the spatial 3D

distributions of Ehkl of disordered cubic TiC0.50

and TiC1.00corresponding to the lower and upper bound-

aries of the homogeneity regions of titanium carbide

calculated in [22]. According to [22], the highest and

lowest Young’s moduli for nonstoichiometric TiC0.50 are

equal to Emax = 440GPa and Emin = 346GPa, while Emax

and Emin for stoichiometric TiC1.00 are equal to 477

and 450GPa, respectively. Thus, Emax and Emin of TiCy

are little different from each other compared with Emax

and Emin of TiOy . Therefore, TiOy has a much higher elastic

anisotropy than the related cubic TiCy .

The analysis of variation of elastic properties depending

on the composition of TiOy generally suggests that dis-

ordered cubic titanium monoxide shows strong anisotropy

throughout the homogeneity region.

Anisotropy may be estimated using the ratio of the

lowest and highest Young’s moduli, i. e. Emin/Emax. For

TiO0.80 and TiO1.25 corresponding to the lower and upper

boundaries of the homogeneity region, this ratio is equal

to 0.205 and 0.227, respectively, i. e. Emin and Emax differ

almost by a factor of 5. For TiC0.50 and TiC1.00, Emin/Emax

are equal to 0.786 and 0.943, i. e. are very little different.

This comparison also confirms very strong elastic anisotropy

of TiOy and very weak elastic anisotropy of TiCy .

For quantitative description of the elastic anisotropy

of cubic crystals, [31] offers a simple criterium

Aan = 2c44/(c11−c12) that is equal to 1 for isotropic cubic

crystals. According to [31], the lower Aan the higher elastic

anisotropy. The calculated anisotropy criterion Aan of cubic

TiOy varies from 0.124 to 0.139 for monoxides from TiO0.80

to TiO1.25 (see Table 2). This indicates very high elastic

anisotropy of cubic titanium monoxide that is a little
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Figure 1. Dependences of Young’s modulus E (y = 0.8, 0.9, 1.0 and 1.2), Poison’s ratio µ (y = 0.8 and 1.0), shear modulus G (y = 0.8,

1.0 and 1.2) and bulk modulus B (y = 0.8, 1.0 and 1.2) on crystallographic direction [hkl] in (100) plane of cubic TiOy with different

relative oxygen content y .

weakened with the growth of y in TiOy . Such conclusion

agrees with the conclusion on strong anisotropy made

according to the variation of elastic properties depending

on the composition of disordered cubic TiOy in its homo-

geneity region. Aan of the related cubic titanium carbide

varies from ∼ 0.68 to ∼ 0.91 for carbides from TiC0.50

to TiC1.00 [22] that indicates low elastic anisotropy TiCy

compared with TiOy . Anisotropy of crystals is generally

caused by different densities of atomic packing in crystal

lattice of a compound in different directions. Vacancies

present in metal and oxygen sublattices of TiOy cause

a much higher difference in densities of atomic packing

in TiOy compared with TiCy where vacancies are only

present in non-metal sublattice. This results in much higher

elastic anisotropy of titanium monoxide compared with

titanium carbide.

3. Plasticity and Debye temperature
of TiOy

In [32], it is proposed to use the ratio of B and G
of polycrystalline metals to forecast brittle fracture and

plastic behavior of materials. According to the estimations

made for metals, oxides, carbides, nitrides and other

compounds, B/G > 1.75 correspond to ductile materials,
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Figure 2. The calculated spatial distributions a) of Ehkl and of b) Bhkl of disordered cubic TiO0.80, TiO1.00 and TiO1.20 with different

relative oxygen content y .
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while B/G < 1.75 are inherent in brittle materials. Inverse

ratio is currently used: k = G/B . Critical value of G/B ,

that separates ductile substances from brittle ones, is equal

to approx. 0.57, i. e. substances with k = G/B < 0.57 are

ductile.

Isotropic elastic moduli of polycrystalline materials were

calculated by the method reported in [33] using elastic

stiffness constants c i j and elastic compliance constants s i j

(see Table 2). B and G of polycrystalline TiO0.80, TiO1.00

and TiO1.25 (Table 3) calculated by method [33] are equal

to 140.1 and 51.8, 205.7 and 78.8, 229.4 and 88.8 GPa,

respectively. Considering this, B/G of TiOy throughout the

homogeneity region is high and varies from 2.70 to 2.58,

while k = G/B varies from ∼ 0.370 to ∼ 0.387, therefore,

titanium monoxide may be treated as a ductile material.

This agrees with [20] where k = G/B of TiO1.00 is equal

to 0.382, and TiO1.00 is reported as a wrought ductile

substance.

Distribution of elastic oscillations in a solid body depends

on its elastic properties. longitudinal speed of sound vL and

transverse speed of sound v t in an isotropic polycrystalline

substance may be calculated using its B and G by a mean

type method [33]. According to [34], longitudinal speed of

sound vL, transverse speed of sound v t and mean speed of

sound vm are written as

vL =
√

(3B + 4G)/3ρ [m · s−1], (12a)

v t =
√

G/ρ [m · s−1], (12b)

vm =

[

1

3

(

2

v3
t

+
1

v3
L

)]

−1/3

[m · s−1]. (12c)

The Debye temperature θD may be calculated using the

mean elastic oscillation propagation velocity (mean speed

Table 3. Calculated Young’s modulus E, bulk modulus B
and shear modulus G and direct ductility criterium B/G and in-

verse ductility criterium k = G/B of polycrystalline TiOy

y
EV , ER , E, GV , GR , G, B ,

B/G k=G/B
GPa GPa GPa GPa GPa GPa GPa

0.80 188.7 76.5 132.6 74.0 29.7 51.8 140.1 2.704 0.370

0.85 217.1 90.7 153.9 85.2 35.1 60.1 160.4 2.667 0.375

0.90 241.8 103.1 172.5 94.9 39.9 67.4 178.1 2.641 0.378

0.95 263.0 113.8 188.4 103.2 44.0 73.6 193.2 2.623 0.381

1.00 280.5 122.6 201.6 110.2 47.4 78.8 205.7 2.610 0.383

1.05 294.4 129.6 212.0 115.7 50.1 82.9 215.6 2.601 0.385

1.10 304.7 134.9 219.8 119.8 52.1 85.9 222.9 2.594 0.385

1.15 311.4 138.4 224.9 122.4 53.5 87.9 227.7 2.589 0.386

1.20 314.5 140.1 227.3 123.6 54.1 88.9 229.9 2.586 0.387

1.25 314.0 140.0 227.0 123.5 54.1 88.8 229.4 2.585 0.387

of sound) vm (12 s) that depends directly on B and G.

According to [34], dependences of θD on vm is written as

θD =
h

kB

(

3nNA ρ

4πM

)1/3

vm, [K], (13)

where h = 6.6262 · 10−34 J · sec is Planck’s constant.

kB = 1.3807 · 10−23 J · K−1 is Boltzmann constant

NA = 6.022 · 1023mol−1 is Avogadro’s number, ρ is

the density, M is the molecular weight, n is the number

of atoms per a formula unit of the compound. Is the

molecular weight of TixOz ≡ TiOy considering content of
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Figure 4. Variation of the Debye temperature θD depending on

the composition of polycrystalline disordered cubic TiOy : 1 —
data of [19], 2 — data of [14], 3 — calculation of θD herein.

vacancies in the titanium and oxygen sublattices is equal to

M = xATi + z AO.

Using the calculated isotropic B and G of polycrystalline

TiOy (see Table 3) and ρ of TiOy measured in [35], we have
calculated the speeds of sound and Debye temperature θD
depending on the composition of polycrystalline TiOy

(Figure 4).
The calculated θD increase from ∼ 490K for TiO0.80

to ∼ 715K for TiO1.25. According to the theoretical

estimation [19], the Debye temperature of equiatomic

TiO1.00 is equal to ∼ 521K and is quite close to the cal-

culated value θD = 603K. The Debye temperature of cubic

TiOy (0.81 ≤ y ≤ 1.26) have been previously estimated

using the experimental heat capacity measurements within

340−600K [14]. θD values calculated by us are about 65%

of the experimentally estimated θD of disordered cubic TiOy

from temperature dependences of heat capacity C p(T ) [14].
Higher θD values estimated in [14] are probably caused

by the use of C p(T ) measured at T > 300K. The elastic

properties used herein for the Debye temperature estimation

correspond to 0K.

4. Conclusion

The paper has for the first time estimated the elastic

constants ci j and s i j depending on the oxygen content y in

the homogeneity region TiO0.80−TiO1.25 of disordered TiOy .

Disordered cubic titanium monoxide is mechanically stable

and features strong anisotropy throughout the homogeneity

region. By the ratio of the bulk modulus B and shear

modulus G, titanium monoxide may be treated as a ductile

material.
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Chem. Scand. 11, 10, 1641 (1957).

[4] E. Hilti. Naturwissenschaften 55, 3, 130 (1968).

[5] D. Watanabe, O. Terasaki, A. Jostsons, J.R. Castles.

In: The Chemistry of Extended Defects in Non-Metallic

Solids / Eds L. Eyring, M. O’Keeffe. North-Holland Publish-

ing Co, Amsterdam−London (1970). P. 238−257.

[6] M.D. Banus, T.B. Reed, A.J. Strauss. Phys. Rev. B 5, 8, 2775

(1972).
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