# 07.2;07.3

# Вклад области, обедненной носителями заряда, в вольт-амперную характеристику фотопреобразователей

© Н.М. Богатов<sup>1</sup>, В.С. Володин<sup>1</sup>, Л.Р. Григорьян<sup>1</sup>, М.С. Коваленко<sup>1</sup>, Л.С. Лунин<sup>2</sup>

<sup>1</sup> Кубанский государственный университет, Краснодар, Россия

<sup>2</sup> Федеральный исследовательский центр Южный научный центр РАН, Ростов-на-Дону, Россия E-mail: bogatov@phys.kubsu.ru, lunin Is@mail.ru

Поступило в Редакцию 5 апреля 2024 г. В окончательной редакции 26 апреля 2024 г.

Принято к публикации 27 апреля 2024 г.

Проанализирован вклад рекомбинационного тока нерезкого n-p-перехода с диффузионным профилем легирования в вольт-амперную характеристику кремниевых фотопреобразователей. Показано, что расположение области пространственного заряда и области, обедненной носителями заряда, не совпадает. Значение электрического потенциального барьера n-p-перехода  $V_0$  равно изменению потенциала электрического поля в области, обедненной носителями заряда, а не во всей области пространственного заряда. Этот факт существенно ограничивает значения напряжения холостого хода и КПД фотопреобразователей.

Ключевые слова: фотодиод, *n*-*p*-переход, область пространственного заряда, вольт-амперная характеристика.

DOI: 10.61011/PJTF.2024.16.58530.19944

Анализ вольт-амперных характеристик (ВАХ) и определение их параметров являются важным методом диагностики фотодиодов и фотопреобразователей [1,2], использующим классические теории генерационнорекомбинационных процессов в области пространственного заряда (ОПЗ) и транспорта носителей заряда: теория Шокли-Нойса-Саа, диодная теория при низком и высоком уровне инжекции и др. [3].

Структура полупроводниковых приборов с *n*-*p*-переходом формируется распределением доноров и акцепторов. Основы теории *n*-*p*-перехода сформулированы Шокли. Существование области, обедненной носителями заряда (ООНЗ), в которой концентрации электронов и дырок много меньше концентрации ионизованных доноров и акцепторов, является ключевым положением этой теории. Теория Шокли модифицируется для структур с резкими и плавными *n*-*p*-переходами [3,4]. Анализ распределения плотности заряда в ОПЗ *n*-*p*-перехода является актуальной задачей [5], так как классические теории *n*-*p*-перехода недостаточно точно описывают особенности существования ООНЗ. Результаты моделирования распределения равновесных электронов и дырок [5] показывают, что структура сильно несимметричного резкого *n*-*p*-перехода отличается от предсказываемой классическими моделями тем, что в ОПЗ соседствуют обедненная и обогащенная носителями заряда области, а размер ООНЗ меньше, чем в теориях Шокли и Шокли-Нойса-Саа.

Цель настоящей работы состоит в анализе вклада в ВАХ рекомбинационного тока нерезкого *n*-*p*-перехода с диффузионным профилем легирования.

Профиль легирования примесей в диффузионном n-p-переходе зависит от координаты x. В модели диф-

фузии из неограниченного источника

$$N(x) = N_{D0} \operatorname{erfc}\left(\frac{x+w_n}{x_0}\right) - N_A$$
 при  $-w_n \leqslant x \leqslant w_p,$ 

где  $N_{D0}$  — концентрация доноров на поверхности  $x = -w_n$ ;  $w_n$  — глубина залегания n-p-перехода;  $N_A$  — концентрация акцепторов;  $w_p$  — толщина базы;  $x_0 = 2\sqrt{D_d t_d}$ ;  $D_d$  — коэффициент диффузии доноров, зависящий от температуры;  $t_d$  — время диффузии. В расчетах  $x_0$  определяется по заданному значению  $w_n$  как решение уравнения N(0) = 0.

Равновесные распределения потенциала электрического поля  $\varphi(x)$ , концентрации электронов n(x) и дырок p(x) в n-p-переходе найдем, решая уравнение Пуассона

$$\frac{d^2}{dx^2}\varphi(x) = -\frac{q}{\varepsilon\varepsilon_0} \big( p(x) - n(x) + N^{ion}(x) \big), \qquad (1)$$

где q — элементарный заряд,  $\varepsilon$  — диэлектрическая проницаемость вещества,  $\varepsilon_0$  — диэлектрическая постоянная,  $N^{ion}(x)$  — профиль распределения ионизованных доноров и акцепторов,

$$n(x) = N_c e^{\frac{F - E_g + q \varphi(x)}{kT}}, \qquad p(x) = N_v e^{\frac{-F - q \varphi(x)}{kT}},$$
 (2)

 $N_c$  — эффективная плотность электронных состояний в окрестности дна зоны проводимости; F — электрохимический потенциал (уровень Ферми), отсчитанный от вершины валентной зоны в точке  $x = w_p$ ; k — постоянная Больцмана; T — абсолютная температура;  $N_v$  — эффективная плотность электронных состояний в окрестности вершины валентной зоны;  $E_g$  — ширина запрещенной зоны. Дополнительным условием является



**Рис. 1.** Результаты численных расчетов потенциала электрического поля  $\varphi(x)$  (1), концентраций электронов n(x) (2), дырок p(x) (3) и ионизованных примесей (по модулю)  $|N^{ion}(x)|$  (4).



**Рис. 2.** Вольт-амперные характеристики.  $I - V_0 \approx 0.89$  V, КПД = 16.5%;  $2 - V_0 = 0.6$  V, КПД = 12.6%.

условие общей электронейтральности:

$$\int_{-w_n}^{w_p} (p(x) - n(x) + N^{ion}(x)) dx = 0.$$
 (3)

Уравнение (1) с учетом (2) и (3) решалось в разностной форме методом последовательных итераций.

Рассчитанные численно зависимости  $\varphi(x)$ , n(x), p(x) и  $N^{ion}(x)$  для кремния при T = 300 К показаны на рис. 1. Параметры профиля легирования соответствуют фотоэлектрическим преобразователям [6]:  $N_{D0} = 10^{26}$  m<sup>-3</sup>,  $N_A = 10^{21}$  m<sup>-3</sup>, n-p-переход с  $w_n = 0.45 \cdot 10^{-6}$  m не является резким, так что размер части ОПЗ, обогащенной электронами (рис. 1), мал в сравнении со структурами, рассмотренными в [5].

Концентрация ионизованных доноров  $N^{ion} = 1.46 \cdot 10^{25} \,\mathrm{m}^{-3}$  при  $x = -w_n$  (рис. 1),  $N^{ion} < N_c = 2.74 \cdot 10^{25} \,\mathrm{m}^{-3}$ ; следовательно, электроны не являются вырожденными. ООНЗ,

где  $n(x), p(x) \ll |N^{ion}(x)|$ , расположена при  $0 < x < 0.75 \cdot 10^{-6}$  m. Изменение  $\varphi(x)$  в ООНЗ равновесного n-p-перехода составляет  $V_0 = 0.6$  V. Часть ОПЗ, содержащая положительную плотность заряда, начинается на поверхности  $x = -w_n$  и простирается вплоть до металлургической границы x = 0. В этой области n(x) меньше, но порядка  $N^{ion}(x)$ , поэтому последовательное сопротивление *n*-слоя много меньше, чем для *p*-слоя.

Если электрическое смещение на контактах U, то электрическое смещение в нерезком диффузионном n-p-переходе  $U_{np}$  происходит в ООНЗ, а не во всей ОПЗ. Оценим вклад в ВАХ рекомбинационного тока нерезкого n-p-перехода с диффузионным профилем легирования. Разделим объем на три части: 1) эмиттер n-типа проводимости, где  $n(x) \approx N^{ion}(x)$ , расположенный при  $-w_n \leq x < 0$ ; 2) ООНЗ, расположенный при  $0 \leq x < d_p$  ( $d_p \approx 0.75 \cdot 10^{-6}$  m); 3) база p-типа проводимости, где  $p(x) \approx |N^{ion}(x)|$ , расположенная при  $d_p \leq x < w_p$  ( $d_p \ll w_p$ ). В общем случае в ВАХ I(U) вносят вклад все три части.

Дрейфовая составляющая транспорта дырок в эмиттере, обусловленная напряженностью внутреннего электрического поля, созданного градиентом концентрации доноров, уменьшает рекомбинационные потери в этой области. Рекомбинационные потери в базе существенно сокращаются, если диффузионная длина дырок в несколько раз превышает ее толщину [4]. В [6] исследовалась серия образцов, в которых преобладает рекомбинационная составляющая ОПЗ, а параметры профиля легирования совпадают с заданными в приведенных выше расчетах. Сравним при этих параметрах рекомбинационные токи всей ОПЗ и ООНЗ.

ВАХ освещенного фотопреобразователя

$$I(U) \approx I_{ph} - \frac{I_{r0}}{\sqrt{1 - (U + IR_s)/V_0}} \times \left\{ \exp\left(\frac{q(U + IR_s)}{akT}\right) - 1 \right\} - \frac{U + IR_s}{R_{sh}},$$
(4)

где  $I_{ph}$  — фототок,  $R_s$  — сосредоточенное последовательное сопротивление,  $R_{sh}$  — шунтирующее сопротивление, a — коэффициент неидеальности n-p-перехода. В теории Шокли-Нойса-Саа  $a \approx 2$ ,

$$I_{r0} = \frac{Sqn_i}{2\tau} \frac{\frac{kT}{q} \sqrt{\frac{\varepsilon \varepsilon_0}{4\pi q V_0}}}{\sqrt{(N_D^+ + N_A^-)}} \left( \sqrt{\frac{N_A^-}{N_D^+}} + \sqrt{\frac{N_D^+}{N_A^-}} \right), \quad (5)$$

где S — площадь n-p-перехода,  $n_i$  — собственная концентрация носителей заряда,  $\tau$  — эффективное время жизни неравновесных носителей заряда,  $V_0$  — электрический потенциальный барьер n-p-перехода,  $N_A^-$  концентрация ионизованных акцепторов,  $N_D^+$  — концентрация ионизованных доноров.

Традиционный подход заключается в том, что рекомбинационный ток рассчитывается во всей ОПЗ *n*-*p*-перехода, тогда, согласно [3],

$$V_0 \approx \frac{kT}{q} \ln \frac{N_D^+ N_A^-}{n_i^2}.$$
 (6)

Подставим в формулу (6) концентрации  $N_D^+ = N^{ion}(-w_n)$  и  $N_A^- = N_A$ , соответствующие результатам расчетов, представленным на рис. 1. Тогда получим  $V_0 \approx 0.89$  V.

В настоящей работе развивается подход, согласно которому рекомбинационный ток рассчитывается в ООНЗ, тогда  $V_0 = 0.6$  V, в формуле (5)  $N_D^+ \to \infty$  и  $N_A^- \approx N_A$ .

Рассчитанные ВАХ показаны на рис. 2. В расчетах использованы значения  $S = 1 \text{ cm}^2$ ,  $\tau = 6.4 \cdot 10^{-7} \text{ s}$ ,  $R_s = 4.2 \Omega$ ,  $R_{sh} = 3.4 \cdot 10^5 \Omega$ , соответствующие контрольному образцу в [6],  $I_{ph} = 41 \text{ mA}$  моделирует условия АМО. Значение напряжения холостого хода  $V_{oc} \approx 0.85 \text{ V}$  превышает наблюдаемые у кремниевых фотопреобразователей  $V_{oc} \approx 0.6 \text{ V}$ .

В результате показано, что значение электрического потенциального барьера *n*-*p*-перехода V<sub>0</sub> равно изменению  $\varphi(x)$  в ООНЗ (а не во всей ОПЗ) и определяется профилем легирующей примеси. Формула (6) верна для ступенчатого симметричного и требует уточнения для диффузионного *n*-*p*-перехода. Если значение U приближается к V<sub>0</sub>, то *n*-*p*-переход "заплывает" носителями заряда, и ООНЗ исчезает. В этом случае теория Шокли-Нойса-Саа неприменима, разделение фотогенерированных электронов и дырок происходит посредством тянущего поля, созданного градиентом состава. Таким образом, показано существование принципиального ограничения на значение напряжения холостого хода и КПД кремниевых фотопреобразователей. На следующем этапе работы будут проанализированы гетеропереходы с несимметричным легированием.

#### Финансирование работы

Работа выполнена в рамках реализации государственного задания ЮНЦ РАН (№ гр. проекта 122020100254-3).

## Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

### Список литературы

- В.В. Трегулов, В.Г. Литвинов, А.В. Ермачихин, ЖТФ, 89 (5), 737 (2019). DOI: 10.21883/JTF.2019.05.47477.237-18 [V.V. Tregulov, V.G. Litvinov, A.V. Ermachikhin, Tech. Phys., 64, 686 (2019). DOI: 10.1134/S1063784219050232].
- [2] A. Gaibov, A. Eshkulov, U. Juraev, K. Vakhobov, E3S Web of Conf., 461, 01070 (2023).
   DOI: 10.1051/e3sconf/202346101070
- [3] A. Mohammed, *P*–*N junction*, technical report (2020). DOI: 10.13140/RG.2.2.13294.23363

- [4] The physics of semiconductor devices. Springer Proceedings in Physics (Springer, 2019). DOI: 10.1007/978-3-319-97604-4
- [5] N.M. Bogatov, L.R. Grigoryan, A.I. Kovalenko, I.I. Nesterenko, Y.A. Polovodov, J. Phys.: Conf. Ser., **1278**, 01200 (2019). DOI: 10.1088/1742-6596/1278/1/012006
- [6] Н.М. Богатов, Л.Р. Григорьян, А.И. Коваленко, М.С. Коваленко, Л.С. Лунин, Письма в ЖТФ, 47 (7), 10 (2021). DOI: 10.21883/PJTF.2021.07.50791.18596
  [N.M. Bogatov, L.R. Grigor'yan, A.I. Kovalenko, M.S. Kovalenko, L.S. Lunin, Tech. Phys. Lett., 47, 326 (2021). DOI: 10.1134/S1063785021040040].