01.1;03.4

Модель испарения капли водного раствора соли до начала кристаллизации

© В.Ю. Левашов¹, А.П. Крюков^{1,2}, Л.А. Домбровский^{3,4}

¹ Институт механики Московского государственного университета им. М.В. Ломоносова, Москва, Россия

² Национальный исследовательский университет "МЭИ", Москва, Россия

³ Объединенный институт высоких температур РАН, Москва, Россия

⁴ Тюменский государственный университет, Тюмень, Россия

E-mail: vyl69@mail.ru, levashovvy@imec.msu.ru

Поступило в Редакцию 28 февраля 2024 г. В окончательной редакции 17 мая 2024 г. Принято к публикации 23 мая 2024 г.

Предложен приближенный метод расчета размера и температуры сферических капель водного раствора соли (NaCl), применимый до начала кристаллизации. Результаты расчетов согласуются с полученными по полной модели испарения.

Ключевые слова: испарение, капля, раствор соли.

DOI: 10.61011/PJTF.2024.17.58583.19908

Испарение капель жидкостей изучалось в течение многих лет. Полное и точное решение этой задачи оказывается весьма сложным [1]. Вместе с тем исследование испарения является важным для ряда актуальных технических приложений [2,3] и было бы удобно иметь приближенное решение, дающее надежные оценки наиболее важных параметров процесса. Испарение капли воды с растворенной в ней солью представляет интерес, в частности, в связи с применением морской воды для капельных завес, защищающих морские нефтяные платформы от теплового излучения возможного пожара [4,5], при разработке методов опреснения морской воды [6], а также в различных задачах энергетики, химических технологий, биологии и медицины [7–9].

Как показали результаты экспериментов [10] и расчетов [11] по испарению капель чистой воды, можно выделить три этапа испарения капель: сначала температура капли быстро уменьшается за счет потери тепла на испарение, затем остается почти неизменной при временном равновесии между конвективным подводом тепла и его расходом на испарение, а на заключительном этапе испарение приводит к значительному уменьшению размера капли. Наиболее продолжительным по времени, как правило, является второй этап процесса. Интересно, что подобное изменение температуры наблюдается также при получении тонких мембран из растворов полимеров [12]. При испарении капли водного раствора соли ее концентрация возрастает и интенсивность испарения уменьшается, после чего соль кристаллизуется, образуя пористую корку на поверхности капли [13-15]. Цель настоящей работы состоит в построении приближенной модели для оценки времени испарения и параметров капли раствора вплоть до начала кристаллизации соли.

Рассмотрим сферическую каплю воды с начальными значениями радиуса R_0 и массовой концентрации пова-

ренной соли $C_{s,0}$. Во многих из названных выше прикладных задач мелкие капли обтекаются потоком влажного воздуха с постоянными значениями давления p_{∞} , температуры T_{∞} и относительной влажности ϕ_{∞} , число Рейнольдса потока, рассчитанное по диаметру капли и ее скорости относительно воздуха, меньше единицы. В этом режиме течения, называемом течением Стокса, конвективный тепловой поток к капле характеризуется числом Нуссельта Nu = 2. Схема задачи представлена на рис. 1. Начальная температура капли равна температуре воздуха, масса капли

$$M_0 = (\rho_s C_{s,0} + \rho_w (1 - C_{s,0})) V_0,$$

где $V_0 = 4\pi R_0^3/3$ — объем капли, ρ_s, ρ_w — плотности соли и воды. Масса соли $m_s = M_0 C_{s,0}$, начальная масса воды в капле $m_{0,w} = M_0(1 - C_{s,0})$. Температура капли T определяется из уравнения теплового баланса

$$Mc \frac{dT}{dt} = 4\pi R[k(T_{\infty} - T) - RL\dot{m}], \ T(0) = T_{\infty}, \quad (1)$$

где *М* — масса капли радиусом *R*; *с* — удельная массовая теплоемкость раствора; *k* — коэффициент теплопроводности влажного воздуха; *m* — плотность потока

Оценка точности приближенной модели

<i>Cs</i> ,0, %	R _* , mm	Приближенная модель					Полная модель испарения				
		<i>t</i> ₁ , s	T_1 , °C	$C_{s,1}, \%$	R_1 , mm	<i>t</i> _* , s	<i>t</i> ₁ , s	T_1 , °C	$C_{s,1}, \%$	R_1 , mm	<i>t</i> _* , s
10	0.67	13.3	15.8	10.2	0.99	2023	128	15.4	10.7	0.98	1984
20	0.88	14.2	15.8	20.4	0.99	781	126	15.8	21.1	0.98	792
25	0.97	14.7	15.8	25.5	0.99	171	122	16.0	26.3	0.98	183

массы вещества, отводимого с поверхности капли; L — удельная теплота парообразования. Слагаемые в правой части уравнения теплового баланса — конвективный тепловой поток к малой капле и тепло, отводимое от капли испарением. Численное решение задачи Коши (1) может быть получено с использованием одной из стандартных программ.

Первый этап испарения завершается при dT/dt = 0, когда снижение температуры прекращается и устанавливается временное равновесие между конвективным подводом тепла и отводом тепла при испарении: $k(T_{\infty} - T) = RL\dot{n}$. Поскольку вещество с поверхности капли удаляется благодаря диффузии, справедливо следующее соотношение [11,16]:

$$\dot{m} = -\frac{Dp_{\infty}}{RR_{gas}T_{\infty}} \ln\left[\frac{1-(1-y)\frac{p_{sal}(T)}{p_{\infty}}\frac{\mu_w}{\mu_{gas}}}{1-\varphi_{\infty}\frac{p_{sal}(T_{\infty})}{p_{\infty}}\frac{\mu_w}{\mu_{gas}}}\right],\qquad(2)$$

где D — коэффициент диффузии, R_{gas} — газовая постоянная влажного воздуха, μ_w и μ_{gas} — молярные массы воды и влажного воздуха, $p_{sat}(T)$ — давление насыщенного водяного пара при температуре T. Величина $(1 - y)p_{sat}(T_s)$ в (2), согласно закону Рауля, учитывает изменение давления насыщенного водяного пара из-за наличия соли [17]. Мольная доля соли определяется как $y = (m_s/\mu_s)/[(m_s/\mu_s) + (m_w/\mu_w)]$. Ввиду малости величины логарифма формулу (2) можно приближенно записать в более простом виде

$$\dot{m} = \frac{D}{RR_{gas}T_{\infty}} \frac{\mu_w}{\mu_{gas}} \left((1 - y)p_{sat}(T) - \varphi_{\infty}p_{sat}(T_{\infty}) \right).$$
(3)

На первом этапе испарения изменение массовой концентрации соли незначительно, и температуру капли в конце этого этапа T_1 можно оценить из соотношения

$$\frac{k}{L}(T_{\infty} - T_{1}) = \frac{D}{R_{w}T_{\infty}} ((1 - y_{0})p_{sat}(T_{1}) - \varphi_{\infty}p_{sat}(T_{\infty})).$$
(4)

Здесь учтено, что $R_{gas}\mu_{gas} = \mathscr{R}$; \mathscr{R} — универсальная газовая постоянная; $R_w = \mathscr{R}/\mu_w$, y_0 — мольная доля соли в начальный момент времени. Для оценки продолжительности первого этапа t_1 воспользуемся уравнением (1) и температурой T_1 из выражения (4). Поскольку подвод тепла к капле незначителен, а массовый поток испарения максимален, для величины t_1 имеем

$$\frac{T_1 - T_\infty}{t_1} = -\frac{4\pi RD}{R_w T_\infty} \frac{L}{Mc} p_{sat}(T_\infty)(1 - y - \varphi_\infty).$$
(5)

Письма в ЖТФ, 2024, том 50, вып. 17

Поскольку диффузионный поток постепенно уменьшается, а подвод тепла к капле увеличивается, полученная оценка величины t_1 минимальная.

Изменение радиуса капли с течением времени определяется путем решения следующей задачи Коши:

$$\frac{dR}{dt} = -\frac{\dot{m}}{\rho_w}, \quad R(0) = R_0. \tag{6}$$

Для оценки возможности начала кристаллизации соли до завершения первого этапа процесса оценим максимально возможное изменение радиуса капли за это время. Полагая, что в течение времени t_1 капля имеет температуру T_{∞} , а массовая доля соли незначительна, получаем

$$\frac{R_1^2}{R_0^2} = 1 - \frac{2Dp_{sat}(T_\infty)}{\rho_w R_w T_\infty R_0^2} (1 - \varphi_\infty) t_1.$$
(7)

Масса капли и концентрация соли к концу первого этапа составляют $M_1 = M_0 - \rho_w \Delta V$ и $C_{s,1} = m_s/M_1$ (здесь $\Delta V = V_0 - \frac{4}{3} \pi R_1^3$). Согласно [18], кристаллизация начинается, когда концентрация соли в растворе достигает значения $C_s^* = 0.268$.

После того как капля охладилась до температуры T_1 , все поступающее к ней тепло идет на испарение, а температура капли остается неизменной. Поэтому время начала кристаллизации t_* и соответствующий ему радиус капли R_* связаны соотношением

$$R_*^2 = R_1^2 - \frac{2k}{\rho_w L} \left(T_\infty - T_1 \right) (t_* - t_1).$$
(8)

Для оценки погрешности предложенной приближенной модели рассмотрим испарение капли при $R_0=1\,\mathrm{mm},\,T_\infty=27.5^\circ\mathrm{C}$ и $\varphi_\infty=27\%$, варьируя начальную массовую концентрацию соли от 10 до 25%. Сравнение с расчетами по полной модели испарения [11], точность которой подтверждена сравнением с экспериментальными данными [10], представлено в таблице и на рис. 2. Незакрашенными ромбами и треугольниками на рис. 2 обозначены данные, полученные по упрощенной модели. Как и предполагалось, приближенная модель значительно занижает продолжительность первого этапа испарения. Вместе с тем расчетные данные по времени начала кристаллизации различаются не более чем на 7%. С практической точки зрения важно, что значительно более простая модель дает правильную оценку времени начала кристаллизации соли и параметров капли в этот момент времени.

Рис. 2. Результаты расчета по модели испарения [11] (линии, синие кружки, красные закрашенные ромбы) и по упрощенной модели (незакрашенные ромбы и треугольники) для $R_0 = 1 \text{ mm}, T_{\infty} = 27.5^{\circ} \text{C}$ и $\varphi_{\infty} = 27\%$ и различных начальных массовых концентраций соли. Цветной вариант рисунка представлен в электронной версии статьи.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 24-29-00303 (https://rscf.ru/project/24-29-00303/).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- А.В. Козырев, А.Г. Ситников, УФН, **171** (7), 765 (2001).
 DOI: 10.3367/UFNr.0171.200107c.0765 [A.V. Kozyrev, A.G. Sitnikov, Phys. Usp., **44** (7), 725 (2001).
 DOI: 10.1070/PU2001v044n07ABEH000953].
- S.S. Sazhin, Droplets and sprays (Springer, 2014).
 DOI: 10.1007/978-1-4471-6386-2
- [3] Н.М. Корценштейн, Письма в ЖТФ, 48 (11), 41 (2022).
 DOI: 10.21883/PJTF.2022.11.52613.19199
 [N.M. Kortsenshteyn, Tech. Phys Lett., 48, 169 (2022).
 DOI: 10.1134/S1063785022040204].
- [4] L.A. Dombrovsky, V.Yu. Levashov, A.P. Kryukov, S. Dembele, J.X. Wen, Int. J. Therm. Sci., 152, 106299 (2020). DOI: 10.1016/j.ijthermalsci.2020.106299
- [5] L.A. Dombrovsky, S. Dembele, Comput. Therm. Sci., 14 (4), 1 (2022). DOI: 10.1615/ComputThermalScien.2022041314
- [6] L. Liu, K. Zhang, S. Kong, X. Wang, L. Yong, M. Mi, Eur. Phys. J. E, 43, 36 (2020). DOI: 10.1140/epje/i2020-11956-9
- [7] S.Y. Misyura, Sci. Rep., 7, 14759 (2017).
 DOI: 10.1038/s41598-017-15175-1

- [8] J.M. Baumann, M.S. Adam, J.D. Wood, Annu. Rev. Chem. Biomol. Eng., 12, 217 (2021).
 - DOI: 10.1146/annurev-chembioeng-091720-034106
- K. Samborska, S. Poozesh, A. Barańska, M. Sobulska, A. Jedlińska, C. Arpagaus, N. Malekjani, S.M. Jafari, J. Food Eng., **321**, 110960 (2022).
 DOI: 10.1016/j.jfoodeng.2022.110960
- [10] V.Yu. Borodulin, V.N. Letushko, M.I. Nizovtsev, A.N. Sterlyagov, Int. J. Heat Mass Transfer, 109, 609 (2017). DOI: 10.1016/j.ijheatmasstransfer.2017.02.042
- [11] В.Ю. Левашов, А.П. Крюков, Коллоид. журн., 79 (5), 606 (2017).
 [V.Yu. Levashov, А.Р. Кryukov, Colloid J., 79 (5), 647 (2017).
 DOI: 10.1134/S1061933X1705009X].
- [12] L.A. Dombrovsky, M. Frenkel, I. Legchenkova,
 E. Bormashenko, Int. J. Heat Mass Transfer, 158, 120053 (2020). DOI: 10.1016/j.ijheatmasstransfer.2020.120053
- [13] M. Mezhericher, A. Levy, I. Borde, Chem. Eng. Sci., 63 (1), 12 (2008). DOI: 10.1016/j.ces.2007.08.052
- [14] R. de Souza Lima, M.-I. Ré, P. Arlabosse, Powder Technol., 359, 161 (2020). DOI: 10.1016/j.powtec.2019.09.052
- [15] M. Rezaei, R.R. Netz, Phys. Fluids, 33 (9), 091901 (2021).
 DOI: 10.1063/5.0060080
- [16] В.П. Исаченко, Теплообмен при конденсации (Энергия, М., 1997).
- [17] D. Camuffo, Microclimate for cultural heritage, 3rd ed. (Elsevier, 2019), p. 61–71.
- DOI: 10.1016/b978-0-444-64106-9.00004-3
- [18] P. Bharmoria, H. Gupta, V.P. Mohandas, P.K. Ghosh, A. Kumar, J. Phys. Chem. B, **116** (38), 11712 (2012). DOI: 10.1021/jp307261g