03.4 Особенности кавитации, инициированной на лазерном нагревательном элементе вблизи твердой плоской поверхности

© В.М. Чудновский¹, М.А. Гузев¹, Ю.В. Василевский², Е.П. Дац¹, А.В. Кулик¹

¹ Институт прикладной математики ДВО РАН, Владивосток, Россия

 $^{2}\,$ Институт вычислительной математики им. Г.И. Марчука РАН, Москва, Россия

E-mail: datsep@gmail.com

Поступило в Редакцию 16 апреля 2024 г. В окончательной редакции 15 мая 2024 г. Принято к публикации 15 мая 2024 г.

Исследовано влияние плоской твердой границы на динамику кавитационного парового пузырька, возникающего при вскипании воды с недогревом на лазерном нагревательном элементе, сопровождающуюся генерацией струй. Вскипание воды вызвано поглощением непрерывного лазерного излучения с длиной волны $\lambda = 1.47 \,\mu\text{m}$ в окрестности кончика оптоволокна, погруженного в воду. С использованием скоростной видеосьемки установлено, что наличие твердой плоской поверхности вблизи лазерного нагревательного элемента (кончика оптоволокна) приводит к повороту генерируемой струи в направлении к поверхности с образованием угла между направлением распространения струи и плоскостью поверхности. Этот угол определяет степень воздействия фронта струи на плоскую границу и зависит от расстояния от кончика оптоволокна до границы — плоской твердой поверхности.

Ключевые слова: лазер, кавитация, кипение, оптическое волокно.

DOI: 10.61011/PJTF.2024.18.58620.19954

Методы кавитационной очистки, упрочнения и закалки поверхностей хорошо известны, однако с появлением лазерной кавитации эти методы получили большое развитие, поскольку стало возможным проводить селективное воздействие локально на микронных масштабах [1-3]. Такой подход способствовал развитию приложений в технике, биотехнологиях и медицине [1-6]. Лазерная кавитация может быть инициирована с использованием как импульсного [1–8], так и непрерывного [9–12] лазерного излучения. В последнем случае кавитация возникает в результате лазерного нагрева и вскипания жидкости, недогретой до температуры насыщения (кипение с недогревом) [9-12]. Одно из актуальных направлений исследования лазерной кавитации, имеющее большое практическое применение, связано с использованием оптоволокна, по которому распространяется лазерное излучение [9-12]. При использовании оптоволокна конверсия лазерного излучения в тепло происходит в условиях эффективного поглощения излучения водой либо в слое поглощающего излучение вещества, нанесенного на поверхность торца оптоволокна в непосредственной окрестности от его кончика, погруженного в жидкость. При этом кончик оптоволокна становится лазерным нагревательным элементом лазерного аппарата [9,10]. Обычно диаметр кварцевой жилы оптических волокон, применяемых на практике, мал и находится в пределах 0.1-1 mm, поэтому на торце оптоволокна формируется большой тепловой поток. В том случае, когда кончик оптоволокна погружен в воду, большой тепловой поток в окрестности торца быстро нагревает воду до температуры, превышающей температуру кипения, вследствие чего возникает растущий паровой пузырек. Если

пузырек нарастает в среде с температурой, меньшей, чем температура насыщения ("холодное" окружение), то из-за конденсации пара он, достигнув максимального размера, начнет схлопываться (кипение с недогревом). Такие пузырьки, растущие и схлопывающиеся, называются кавитационными, и если при коллапсе они теряют сферичность, то могут генерировать кумулятивные струи и ударные волны, обладающие большой разрушительной силой [1-12]. К потере сферичности приводит влияние близлежащих границ, из-за которых на поверхности пузырька возникает градиент давления [7]. Одной из таких границ является цилиндрический кончик оптоволокна, в окрестности которого формируется паровой пузырек, поэтому вблизи торца коллапс пузырька приводит к появлению двух кумулятивных струй, одна из которых направлена к торцу, а другая — от торца в глубь жидкости, где превращается в затопленную струю (рис. 1) [9,10]. Исследование динамики парового пузырька, возникающего в окрестности кончика оптоволокна вблизи плоской твердой поверхности, фактически сводится к изучению влияния сложной конфигурации, состоящей из цилиндрического кончика оптоволокна и плоской поверхности, на которую эта струя воздействует. От того, как поведет себя кумулятивная струя в таком случае, зависит результат ее действия на обрабатываемую поверхность. Отметим, что оптоволокно обладает большой гибкостью и способно проникать в узкие каналы, щели и иглы и таким образом генерировать кавитационные пузырьки в условиях, где использование других методов затруднительно либо неосуществимо. По этой причине использование лазерного нагревательного элемента для селективной очистки и обработки поверхности может иметь большое практическое значение.

Цель работы — исследовать влияние плоской твердой границы на динамику кавитационного парового пузырька, возникающего на лазерном нагревательном элементе в процессе кипения с недогревом, коллапс которого сопровождается генерацией струй.

Эксперименты проводились с использованием скоростной видеокамеры Photron FASTCAM SA-Z со скоростью съемки 100 000 fps, оптоволокна с диаметром (по кварцу) 600 µm, прозрачной стеклянной кюветы размером $100 \times 100 \times 50$ mm, заполненной водой с температурой T ~ 295 К. Фиксировали процесс вскипания воды на кончике оптоволокна, вызванного действием непрерывного лазерного излучения с длиной волны $\lambda = 1.47 \,\mu\text{m}$, которое поглощается в воде с коэффициентом $k = 25 \, \text{cm}^{-1}$. Оптоволокно устанавливалось параллельно твердой плоской поверхности (границе), роль которой выполняла одна из стеклянных граней кюветы (рис. 1). Исследовалась зависимость угла поворота кумулятивной струи от безразмерного расстояния $\gamma = L/D_{\text{max}}$ до плоской твердой поверхности (границы), где L — расстояние от оси оптоволокна до границы, *D*_{max} — максимальный диаметр пузырька (рис. 1). Также исследовалась зависимость скорости струи от времени для различных расстояний L. При получении данных эксперимент воспроизводился три раза для каждого расстояния.

Рис. 1. Эволюция пузырька от момента достижения максимального диаметра (кадр 1) до возникновения затопленной струи (кадр 4). A — твердая плоская граница, B — оптоволокно, D_{max} — максимальный диаметр пузырька, L расстояние от оси оптоволокна до границы, θ — угол наклона струи к оси оптоволокна. Время между кадрами $1-2t = 280 \,\mu$ s, между кадрами $2-3t = 180 \,\mu$ s, между кадрами $3-4t = 410 \,\mu$ s. $D_{\text{max}} = 4.2 \,\text{mm}$, $L = 5.4 \,\text{mm}$, мощность лазерного излучения $P = 8 \,\text{W}$.

Рис. 2. Реакция затопленной струи на плоскую твердую поверхность в зависимости от γ : $\gamma_1 = 3$ (кадр 1), $\gamma_2 = 1.26$ (кадр 2), $\gamma_3 = 0.77$ (кадр 3), $\gamma_4 = 0.3$ (кадр 4). Мощность лазерного излучения P = 8 W.

На кадрах рис. 1 представлена эволюция парового пузырька от момента достижения максимального размера (кадр 1) до генерации затопленной струи в результате коллапса (кадр 4), а также приведены основные обозначения. На кадрах 2 и 3 (рис. 1) показаны момент возникновения струи у торца оптоволокна и фрагмент вторичного вскипания движущейся в потоке жидкости ("отскока") [12] соответственно.

На рис. 2 показано, как присутствие плоской твердой границы влияет на затопленную струю, генерируемую при коллапсе парогазового пузырька. На кадре 1 (рис. 2) пузырек находится на расстоянии $L (\gamma_1 \ge 3)$, на котором твердая плоская стенка не влияет на его динамику, а струя распространяется вдоль оси оптоволокна так, как это имеет место в свободном пространстве [9,10]. На кадре 2 (рис. 2) пузырек уже "чувствует" стенку ($\gamma_2 = 1.26$), что приводит к повороту затопленной струи в направлении границы. На кадрах 3 и 4 оптоволокно еще более приближено к границе ($\gamma_3 = 0.77$ и $\gamma_4 = 0.3$ соответственно), что приводит к ударному взаимодействию кумулятивной струи с плоской поверхностью.

На рис. 3, *а* показано, как изменяется угол θ наклона кумулятивной струи в направлении твердой плоской поверхности в зависимости от γ , а на рис. 3, *b* и *с* представлена зависимость скорости затопленной струи от времени для различных расстояний *L*. Эксперименты проведены для двух мощностей лазерного излучения (P = 8 и 6 W).

Рис. 3. a — зависимость угла поворота струи от безразмерного расстояния γ . Пунктирная линия — аппроксимация измерений полиномом третьей степени. b и c — зависимости скорости фронта затопленной струи от времени для различных расстояний L при мощности лазерного излучения 6 (b) и 8 W (c).

Из рис. 3, a-c следует, что наличие твердой плоской границы приводит к повороту затопленной струи в направлении к поверхности, при этом зависимость угла поворота θ от расстояния до поверхности L не зависит от мощности лазерного излучения в диапазоне 6–8 W.

Поворот струи обусловлен сложением двух сил, возникающих в жидкости под влиянием двух границ: твердой плоской поверхности и цилиндрического кварцевого кончика оптоволокна, в окрестности которых пузырек растет и схлопывается. Вблизи плоской границы в период роста пузырька жидкость радиально растекается по ее поверхности, что приводит к градиенту давления на поверхности пузырька. К моменту остановки роста на дальнем от плоской поверхности полюсе пузырька давление жидкости максимально и превосходит давление на ближнем к поверхности полюсе. Разность давлений приводит к тому, что на стадии схлопывания в точке

жто 2024 том 50 выд 18

дальнего полюса пузырька формируется кумулятивная струя, движущаяся с ускорением по оси, соединяющей полюса, к плоской поверхности через пузырек. Такие струи названы "регулярными" (regular jet) [6,8]. В то же время пузырек схлопывается в окрестности цилиндрического кончика оптоволокна, где струя образуется в результате радиального столкновения жидкости при обтекании "обратного уступа", который образует грань цилиндра (торец) [9,10]. Такие струи названы "игольчатыми" (needle jet) [6,8]. Их скорость на порядок превосходит скорость "регулярной" струи. В эксперименте "игольчатая" струя, когда кончик оптоволокна находится вне влияния стенки, распространяется от торца оптоволокна в глубь жидкости параллельно поверхности по направлению оптоволокна. По мере приближения кончика оптоволокна к поверхности "включается" вклад от градиента давления, вызванный наличием стенки. Этот вклад усиливается по мере приближения к плоской твердой поверхности, что приводит к повороту струи. Вблизи стенки пузырек уже не "чувствует" оптоволокна и полностью "захватывается" поверхностью.

Таким образом, в работе показано, что наличие твердой плоской поверхности вблизи лазерного нагревательного элемента (кончика оптоволокна) приводит к повороту генерируемой струи в направлении к поверхности с образованием угла между направлением распространения струи и плоскостью поверхности. Этот угол определяет уровень воздействия фронта струи на плоскую границу и зависит от расстояния от кончика оптоволокна до границы — плоской твердой поверхности. Мы полагаем, что результаты, показанные на рис. 1–3, могут иметь место и для других конфигураций границ, что может указывать на универсальный характер данного явления.

Финансирование работы

Работа проведена при финансовой поддержке Российского научного фонда (№ 22-19-00189).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- G. Strotos, Q. Zeng, S.R. Gonzalez-Avila, A. Theodorakakos, M. Gavaises, C.-D Ohl, Langmuir, 34 (22), 6428 (2018). DOI: 10.1021/acs.langmuir.8b01274
- W. Song, M.H. Hong, B.S. Luk'yanchuk, T.C. Chong, J. Appl. Phys., 95 (6), 2952 (2004). DOI: 10.1063/1.1650531
- [3] C.-D. Ohl, M. Arora, R. Dijkink, V. Janve, D. Lohse, Appl. Phys. Lett., 89 (7), 074102 (2006). DOI: 10.1063/1.2337506
- [4] J.L. Compton, A.N. Hellman, V. Venugopalan, Biophys. J., 105 (9), 2221 (2013). DOI: 10.1016/j.bpj.2013.09.027
- [5] K.R. Rau, A. Guerra, A. Vogel, V. Venugopalan, Appl. Phys. Lett., 84 (15), 2940 (2004). DOI: 10.1063/1.1705728
- [6] S.R. Gonzalez-Avila, A.C. van Blokland, Q. Zeng, C.-D. Ohl, J. Fluid Mech., 884, A23 (2020). DOI: 10.1017/jfm.2019.938
- [7] P. Xu, B. Li, Z. Ren, S. Liu, Z. Zuo, Phys. Rev. Fluids, 8 (8), 083601 (2023). DOI: 10.1103/PhysRevFluids.8.083601
- [8] F. Reuter, C.-D. Ohl, Appl. Phys. Lett., 118 (12), 134103 (2021). DOI: 10.1063/5.0045705
- [9] V.M. Chudnovskii, A.A. Levin, V.I. Yusupov, M.A. Guzev, A.A. Chernov, Int. J. Heat Mass Transfer, 150, 119286 (2020). DOI: 10.1016/j.ijheatmasstransfer.2019.119286
- [10] R.V. Fursenko, V.M. Chudnovskii, S.S. Minaev, J. Okajima, Int. J. Heat Mass Transfer, 163, 120420 (2020). DOI: 10.1016/j.ijheatmasstransfer.2020.1204200017-9310
- [11] Е.П. Дац, А.В. Кулик, М.А. Гузев, В.М. Чудновский, Письма в ЖТФ, 49 (16), 38 (2023).
 DOI: 10.21883/PJTF.2023.16.55967.19607 [Е.Р. Dats, A.V. Kulik, М.А. Guzev, V.M. Chudnovskii, Tech. Phys. Lett., 49 (8), 73 (2023). DOI: 10.61011/TPL.2023.08.56694.19607].

[12] Т.П. Адамова, В.М. Чудновский, Д.С. Елистратов, Письма в ЖТФ, 48 (1), 20 (2022).
DOI: 10.21883/PJTF.2022.01.51873.18991 [Т.Р. Adamova, V.M. Chudnovsky, D.S. Elistratov, Tech. Phys. Lett., 48 (1), 16 (2022). DOI: 10.21883/TPL.2022.01.52459.18991].