01

Упругое слияние рентгеновских фотонов в поле атомного иона

© А.Н. Хоперский, А.М. Надолинский [¶], Р.В. Конеев

Ростовский государственный университет путей сообщения, Ростов-на-Дону, Россия

¶e-mail: amnrnd@mail.ru

Поступила в редакцию 16.02.2024 г. В окончательной редакции 11.06.2024 г. Принята к публикации 16.06.2024 г.

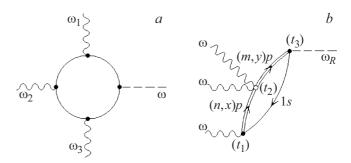
Теоретически предсказаны аналитическая структура, абсолютные значения и угловая анизотропия дифференциального сечения упругого слияния рентгеновских фотонов в поле атомного иона.

Ключевые слова: слияние рентгеновских фотонов, неоноподобный атомный ион, амплитуда вероятности слияния, дифференциальное сечение.

DOI: 10.61011/OS.2024.06.58634.6041-24

1. Введение

Эффект слияния фотонов через рождение виртуальных электрон-позитронных пар вакуума квантовой электродинамики (QED) — предмет интенсивных теоретических исследований [1-15]. Предложенные в этих работах схемы экспериментального наблюдения слияния фотонов еще ждут своей реализации. В рамках QED в приближении слабого поля (энергия падающего фотона $\hbar\omega\ll m_ec^2,\,m_e$ — масса электрона, c — скорость света в вакууме) в лидирующем порядке теории возмущений амплитуда вероятности слияния описывается петлевой диаграммой Фейнмана с тремя падающими фотонами в начальном состоянии и одним фотоном в конечном состоянии процесса (рис. 1, a). Четность числа фотонов на петле воспроизводит QED-теорему Фарри [16]. В работах авторов [17-19] проведены первые теоретические исследования аналога QED-эффекта слияния фотонов в атомной физике — слияния фотонов мягкого $(\hbar\omega \sim I_{1s}/2,\,I_{1s}$ — энергия порога ионизации глубокой $1s^2$ -оболочки) рентгеновского диапазона энергий в поле атома (атомного иона). В кратком сообщении [20] дано обобщение теории и результатов этих работ на жесткий $(\hbar\omega\sim I_{1s})$ рентгеновский диапазон энергий падающего фотона. В настоящей работе мы даем более детальное изложение теории и дополняем физические результаты работы [20]. В этом случае лидирующая амплитуда вероятности слияния соответствует петлевой диаграмме Фейнмана на рис. 1, b. Такие исследования востребованы, в частности, для интерпретации спектров жесткой $(\hbar\omega_R\sim 20{-}30\,\mathrm{keV})$ рентгеновской эмиссии от галактических кластеров [21] и черных дыр активных ядер галактик [22]. В качестве объекта исследования взят неоноподобный ион атома железа (Fe¹⁶⁺, заряд ядра иона Z = 26, конфигурация и терм основного состояния $[0] = 1s^2 2s^2 2p^6 [^1S_0]$). Выбор обусловлен сферической симметрией основного состояния иона Fe¹⁶⁺ и его доступностью в газовой фазе [23] при проведении экспериментов по слиянию фотонов рентгеновского лазера на


свободных электронах (XFEL; X-ray Free-Electron Laser) в поле иона, захваченного в "ловушке" [24].

2. Теория

Амплитуда вероятности и дифференциальное сечение слияния получены в лидирующем третьем (по числу вершин взаимодействия) порядке нерелятивистской теории возмущений. В структуре операторов радиационного (\hat{R}) и контактного (\hat{Q}) переходов,

$$\hat{R} = -\frac{1}{c} \sum_{n=1}^{N} (\hat{p}_n \hat{A}_n), \tag{1}$$

$$\hat{Q} = \frac{1}{2c^2} \sum_{n=1}^{N} (\hat{A}_n \hat{A}_n), \tag{2}$$

Рис. 1. Амплитуды вероятности слияния фотонов в представлении диаграмм Фейнмана: (a) через рождение виртуальной электрон-позитронной пары QED-вакуума [12] $(\omega_{i=1,2,3}$ — энергии лазерных фотонов, ω — энергия "сигнального" фотона); (b) через виртуальные состояния электронов дискретного (n,m) и сплошного (x,y) спектров. Направление времени — слева направо $(t_1 < t_2 < t_3)$. Стрелка вправо — электрон, стрелка влево — вакансия. Двойная линия — состояние получено в хартри-фоковском поле 1s-вакансии. Черный (светлый) кружок на рис. 1,b — вершина радиационного (контактного) перехода. $\omega(\omega_R)$ — падающий (рассеянный) фотон, $\omega_R = 3\omega$.

для оператора электромагнитного поля (в представлении вторичного квантования) принято дипольное приближение [25]:

$$\hat{A}_n = \sum_{\mathbf{k}} \sum_{\rho=1,2} \mathbf{e}_{\mathbf{k}\rho} (\hat{a}_{\mathbf{k}\rho}^+ + \hat{a}_{\mathbf{k}\rho}^-). \tag{3}$$

Критерий применимости дипольного приближения $(
ho=\lambda/r_{1s}\gg 1,\lambda$ — длина волны "сигнального" фотона, r_{1s} — средний радиус 1s-оболочки иона) определяет и границы применимости излагаемой теории. Для исследуемого нами случая иона Fe¹⁶⁺ при максимальной энергии "сигнального" фотона $\hbar\omega_R=24.57\,\mathrm{keV}$ и $r_{1s}=0.031\,\mathrm{\AA}$ имеем $ho\approx16$. Однако при $\hbar\omega_R=400\,\mathrm{keV}$ имеем $\rho \approx 1$, и дипольное приближение теряет смысл. В соотношениях (1) – (3) N — число электронов в ионе, \mathbf{p}_n — оператор импульса n-электрона иона, $\mathbf{e}_{\mathbf{k}\rho}(\mathbf{k})$ — вектор поляризации (волновой вектор) фотона, $\hat{a}_{{f k}
ho}^{+}(\hat{a}_{{f k}
ho}^{-})$ – оператор рождения (уничтожения) фотона. Сильная пространственная и энергетическая отдаленность субвалентной $(2s^2)$ и валентной $(2p^6)$ оболочек от глубокой $1s^2$ -оболочки иона Fe^{16+} [25] позволяет пренебречь их вкладом в вероятность процесса слияния в области энергий $\hbar\omega \sim I_{1s}$.

Наряду с дипольным приближением для оператора электромагнитного поля принято приближение Тамма—Данкова [26] для амплитуд вероятности слияния с максимальным числом "частиц" (фотонов, электронов, вакансий) в рассечениях диаграмм Фейнмана $N_0=5$. Тогда из полного набора амплитуд вероятности слияния (сумма 128 диаграмм Фейнмана) остаются лишь амплитуды на рис. 1, b. В самом деле [25], в дипольном приближении исчезают амплитуды с участием волновой функции 1s-электрона и j_1 — сферической функции Бесселя. При этом в приближении Тамма—Данкова отбрасываются амплитуды вероятности рождения "частиц" до момента поглощения падающего на ион фотона.

Амплитуда вероятности слияния через виртуальные состояния сплошного спектра, согласно диаграмме Фейнмана на рис. 1,b в атомной системе единиц $(e=\hbar=m_e=1)$, принимает вид

$$A = \sum_{M'} \sum_{M''} \int_{0}^{\infty} \int_{0}^{\infty} \frac{dx dy}{\Delta(x, y)} M(x, y), \tag{4}$$

$$\Delta(x, y) = (\omega - I_{1s} - x + i\gamma_{1s})(3\omega - I_{1s} - y + i\gamma_{1s}), (5)$$

$$M(x,y) = \langle 0|\hat{R}|X\rangle\langle X|\hat{Q}|Y\rangle\langle Y|\hat{R}|\overline{0}\rangle, \tag{6}$$

$$|0\rangle = [0] \otimes (\hat{a}_{\omega}^{+})^{3} |0_{\text{ph}}\rangle, \tag{7}$$

$$|X\rangle = |1sxp(^{1}P_{1}), M'\rangle \otimes (\hat{a}_{\omega}^{+})^{2}|0_{\text{ph}}\rangle, \tag{8}$$

$$|Y\rangle = |1syp(^{1}P_{1}), M''\rangle \otimes |0_{\rm ph}\rangle, \tag{9}$$

$$|\overline{0}\rangle = [0] \otimes \hat{a}_{on}^{+} |0_{\rm ph}\rangle. \tag{10}$$

В соотношениях (4)-(10) определены полные волновые функции начального $(|0\rangle)$, промежуточных $(|X\rangle, |Y\rangle)$ и конечного $(|\overline{0}\rangle)$ состояний слияния, проекции полных

моментов системы "ион \otimes электрон" M',M''=-1,0,1, $|0_{\rm ph}\rangle$ — волновая функция фотонного QED-вакуума, $\gamma_{1s}=\Gamma_{1s}/2$, где Γ_{1s} — естественная ширина распада 1s-вакансии иона, заполненные оболочки иона не указаны. Используя методы алгебры операторов рождения (уничтожения) фотонов, теории неприводимых тензорных операторов и теории неортогональных орбиталей [27], для (4) получаем

$$A = \xi \int_{0}^{\infty} \frac{dx}{\Delta(x, y)} [(x + I_{1s})J_{x}]^{2},$$
 (11)

$$\xi = -\frac{1}{3} \left(\frac{2\pi}{V\omega}\right)^2 (\mathbf{e} \cdot \mathbf{e}_R),\tag{12}$$

$$J_x = N_{1s} \left(\langle 1s_0 | \hat{r} | x p_+ \rangle - \Psi_x \right), \tag{13}$$

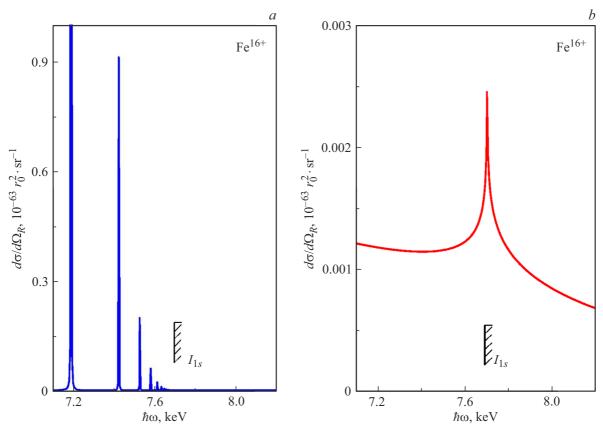
$$N_{1s} = \langle 1s_0 | 1s_+ \rangle \langle 2s_0 | 2s_+ \rangle^2 \langle 2p_0 | 2p_+ \rangle^6, \tag{14}$$

$$\Psi_x = \frac{\langle 1s_0 | \hat{r} | 2p_+ \rangle \langle 2p_0 | xp_+ \rangle}{\langle 2p_0 | 2p_+ \rangle}.$$
 (15)

В равенстве (12) определены: $V({\rm cm}^3)=c$ — объем квантования электромагнитного поля [28] и ${\bf e}({\bf e}_R)$ — вектор поляризации падающего (рассеянного) фотона. В равенствах (13)—(15) индексы "0" и "+" соответствуют радиальным частям волновых функций электронов, полученных решением уравнений самосогласованного поля Хартри—Фока для [0]- и $1s_+(n,x)p_+$ -конфигураций состояний иона. Результат для амплитуды вероятности слияния через виртуальные состояния дискретного спектра аналогичен таковому для величины A (11) с заменами $xp \to np$, $I_{1s} \to I_{1snp}$ (I_{1snp} — энергия фотовозбуждения $1s \to np$), $J_x \to J_n$ и интегрирования по $x \in [0; \infty)$ суммированием по $n \in [3; \infty)$.

Учитывая квантовую интерференцию амплитуд вероятности слияния через виртуальные состояния сплошного и дискретного спектров и следуя "золотому правилу" Ферми [29], для дифференциального сечения слияния получаем

$$\frac{d\sigma}{d\Omega_{\rm p}} = r_0^2 \eta \mu (C^2 + D^2),\tag{16}$$


$$C = \int_{0}^{\infty} dx (x - x_0) f(x) - \sum_{n=3}^{\infty} \Delta_n \varphi_n, \qquad (17)$$

$$D = \gamma_{1s} \left(\int_{0}^{\infty} dx \, f(x) + \sum_{n=3}^{\infty} \Delta_n \varphi_n \right), \tag{18}$$

$$f(x) = \frac{[(x + I_{1s})J_x/\omega]^2}{(x - x_0)^2 + \gamma_{1s}^2},$$
(19)

$$\varphi_n = \frac{(I_{1snp}J_n/\omega)^2}{\Delta_n^2 + \gamma_{1s}^2}.$$
 (20)

Заметим, что структуры (17) и (18) учитывают полноту набора виртуальных состояний дискретного и

Рис. 2. Парциальные дифференциальные сечения слияния фотонов в поле иона Fe^{16+} для \perp -схемы эксперимента ($\mu^{\perp}=1$): (a) учтены лишь виртуальные состояния дискретного спектра (таблица); (b) учтены лишь виртуальные состояния сплошного спектра. $\hbar\omega$ — энергия падающего фотона.

сплошного спектров. Однако формально математически бесконечные суммы в (17) и (18) по виртуальным (промежуточным) состояниям дискретного спектра неизбежно требуют методов приближенных вычислений. В данной работе для вычисления величин I_{1snp} и J_n с главным квантовым числом $n\gg 3$ использован метод аппроксимаций, предложенный в работе [25]. В формулах (16)-(20) определены: Ω_R — пространственный угол вылета рассеянного фотона, r_0 — классический радиус электрона,

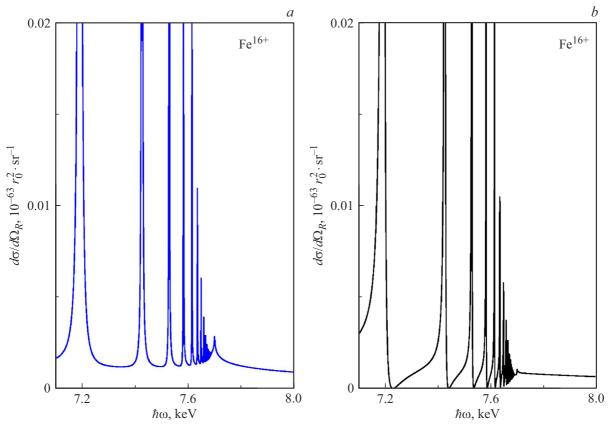
$$\eta = \frac{1}{3} \left(\frac{\pi r_0}{\in V} \right)^2 \frac{\alpha}{a_0} \left(c \hbar \right)^5,$$

 α — постоянная тонкой структуры, \in = 27.21, a_0 — радиус Бора, $x_0 = \omega - I_{1s}$ и $\Delta_n = \omega - I_{1snp}$. Аксиально симметричный (относительно волнового вектора падающего фотона) параметр $\mu = (\mathbf{e} \cdot \mathbf{e}_R)^3$ в (16) определяет эффект угловой анизотропии сечения слияния. Он конкретизирован для трех схем XFEL-эксперимента. Первая схема — векторы поляризации фотонов перпендикулярны плоскости рассеяния $(\mathbf{e}, \mathbf{e}_R \perp P)$. Вторая схема — векторы поляризации фотонов параллельны плоскости рассеяния $(\mathbf{e}, \mathbf{e}_R \parallel P)$. Третья схема — схема с неполяризованными (UP) фотонами. P — плоскость

рассеяния проходит через волновые векторы падающего (\mathbf{k}) и рассеянного (\mathbf{k}_R) фотонов. Как результат имеем

$$\mu^{\perp} = 1, \tag{21}$$

$$\mu^{\parallel} = \cos^2 \theta, \tag{22}$$

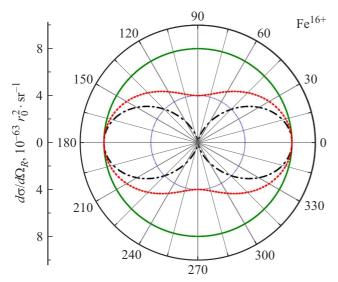

$$\mu_{UP} = \frac{1}{2} (\mu^{\perp} + \mu^{\parallel}),$$
(23)

где θ — угол между векторами \mathbf{k} и \mathbf{k}_R .

Как и следовало ожидать, сечение (16) удовлетворяет асимптотическому условию: $d\sigma/d\Omega_g \to 0$ при $\omega \to \infty$. В формально математическом пределе (в эксперименте $\omega>0$) $\omega\to 0$ возникает "инфракрасная расходимость" сечения слияния: $d\sigma/d\Omega_R\to\infty$. Этот результат воспроизводит таковой работы авторов [17].

3. Результаты и обсуждение

Результаты расчета представлены на рис. 2, 3, 4 и в таблице. Для параметров сечения (16) приняты значения $I_{1s}=7699.23~{\rm eV}$ (релятивистский расчет данной работы), $\Gamma_{1s}=1.046~{\rm eV}$ [30] и $\omega\in(7.15;8.19)~{\rm keV}$ ([31], Linac Coherent Light Source XFEL, USA). Таким образом, исследуется вероятность рождения "сигнального" фотона с энергией $\omega_R\in(21.45;24.57)~{\rm keV}$.


Рис. 3. Полные дифференциальные сечения слияния фотонов в поле иона Fe^{16+} для \perp -схемы эксперимента ($\mu^{\perp}=1$): (a) без учета (сумма сечений на рис. 2,a,b); (b) с учетом квантовой интерференции слагаемых в амплитуде C из (17). $\hbar\omega$ — энергия падающего фотона.

Спектральные характеристики лидирующих резонансов дифференциального сечения слияния фотонов в поле иона Fe^{16+} в \perp -схеме эксперимента

np_+	I_{1snp} , keV	$d\sigma/d\Omega_R \ (10^{-63}r_0^2 \cdot \mathrm{sr}^{-1})$
$3p_+$	7.1937	7.9768
$4p_+$	7.4272	0.9104
$5p_{+}$	7.5293	0.1985
$6p_+$	7.5832	0.0607
$7p_+$	7.6150	0.0232
$8p_+$	7.6354	0.0105
$9p_{+}$	7.6489	0.0058
$10p_{+}$	7.6587	0.0037

Результаты на рис. 2, a и в таблице демонстрируют лидирующую роль $1s \to np$ -резонансов фотовозбуждения в сечении слияния (учтены значения главного квантового числа $n \in [3;500]$). Результат на рис. 2, b в области энергий $\omega \in (7.1;7.5)$ keV демонстрирует тенденцию к "инфракрасной расходимости" сечения слияния. При

этом в области порога ионизации ($\omega\cong I_{1s}$) возникает резонанс слияния через виртуальные состояния сплошного спектра. Структуры на рис. 2 аналогичны таковым в работах [17-19], но соответствующие сечения слияния на ~ 12 порядков величины превосходят их. В самом деле, в области высоких энергий падающих на ион фотонов амплитуды вероятности слияния с участием волновой функции 1s-электрона и j_l — сферической функции Бесселя [17–19] практически подавляются, а в дипольном приближении для оператора контактного перехода обращаются в нуль. Таким образом, переход к жесткому рентгеновскому диапазону энергий падающих фотонов значительно увеличивает вероятность экспериментального обнаружения слияния в XFEL-эксперименте. Сравнение результатов на рис. 3, a и рис. 3, b демонстрирует эффект деструктивной (гасящей) квантовой интерференции амплитуд вероятности по виртуальным состояниям дискретного и сплошного спектров, входящих с разными знаками в амплитуду C из (17). При этом резонанс слияния на рис. 2, в резко "проседает", и в области энергий $\omega \in (7.2; 7.6) \, \text{keV}$ возникают окна "прозрачности" (резкое падение вероятности слияния). Результат на рис. 4 для \perp - и UP-схем эксперимента демонстрирует ярко выраженную угловую анизотропию слияния преимущественное и симметричное слияние в направ-

Рис. 4. Индикатрисы слияния фотонов в поле иона Fe^{16+} с полярным радиусом $d\sigma/d\Omega_R$ и полярным углом θ при энергии падающего фотона $\hbar\omega=7.1937\,\mathrm{keV}$ (энергия резонанса $1s\to 3p$ -фотовозбуждения). Схемы эксперимента: \bot (сплошная кривая), \parallel (штрихпунктирная кривая), неполяризованные фотоны (пунктирная кривая).

лении углов $\theta=0^\circ$, 180° . Здесь обнаруживается качественное отличие от результатов работ [17,18], где преобладающим направлением слияния оказывается угол $\theta=180^\circ$ ("сигнальный" фотон "отражается" от иона). Таким образом, переход к жесткому рентгеновскому диапазону энергий падающих фотонов значительно расширяет пространственную область экспериментального обнаружения слияния в XFEL-эксперименте. Заметим, что результат на рис. 4 качественно воспроизводит таковой для упругого фотон-фотонного рассеяния в поле атомного иона [25] и через QED-вакуум [32,33].

4. Заключение

Построен нерелятивистский вариант квантовой теории процесса упругого слияния фотонов жесткого рентгеновского диапазона энергий в поле многозарядного неоноподобного атомного иона. Установлено возникновение гигантских резонансов дифференциального сечения слияния и его угловая анизотропия в соответствующих схемах предполагаемого XFEL-эксперимента. Выход за рамки дипольного приближения для R- и Qоператоров перехода и учет следующих порядков теории возмущений является предметом будущего развития теории. Обобщение теории на атомы и атомные ионы другого типа, установление роли заряда их ядра и не учтенных в данной работе релятивистских эффектов является предметом будущих исследований. Наконец, оценим абсолютное значение максимума "наблюдаемого" сечения слияния (1 $s \to 3p$ -резонанс в таблице) в предполагаемом XFEL-эксперименте. При средней яркости излучения лазера (число фотонов в лазерном пульсе) $N=10^{21}$ ([34], European XFEL, Germany) в силу теоремы о сумме вероятностей несовместных событий (выбор трех из N падающих на атомный ион фотонов) имеем

$$\frac{N!}{3!(N-3)!} \left(\frac{d\sigma}{d\Omega_R}\right) \cong 0.106 \left[\frac{\text{barn}}{\text{sr}}\right].$$

Полученное значение вполне доступно измерению.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] J. McKenna, P.M. Platzman. Phys. Rev., 129, 2354 (1963).DOI: 10.1103/PhysRev.129.2354
- [2] V.P. Yakovlev. Sov. Phys. JETP, 24, 411 (1967).
- [3] R.L. Dewar. Phys. Rev. A, 10, 2107 (1974).DOI: 10.1103/PhysRevA.10.2107
- [4] F. Moulin, D. Bernard. Opt. Commun., 164, 37 (1999). DOI: 10.48550/arXiv.physics/0203069
- [5] A.E. Kaplan, Y.J. Ding. Phys. Rev. A, 62, 043805 (2000).DOI: 10.1103/PhysRevA.62.043805
- [6] E. Lundström, G. Brodin, J. Lundin et. al. Phys. Rev. Lett., 96, 083602 (2006). DOI: 10.1103/PhysRevLett.96.083602
- [7] A.M. Fedotov, N.B. Narozhny. Phys. Lett. A, 362, 1 (2007).DOI: 10.48550/arXiv.hep-ph/0604258
- [8] A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel. Phys. Rev. A, 78, 062109 (2008). DOI: 10.1103/PhysRevA.78.062109
- [9] H. Gies, F. Karbstein, R. Shaisultanov. Phys. Rev. D, 90, 033007 (2014). DOI: 10.1103/PhysRevD.90.033007
- [10] P. Böhl, B. King, H. Ruhl. Phys. Rev. A, 92, 032115 (2015).DOI: 10.1103/PhysRevA.92.032115
- [11] H. Gies, F. Karbstein, N. Seegert. Phys. Rev. D, 93, 085034 (2016). DOI: 10.1103/PhysRevD.93.08503
- [12] B. King, H. Hu, B. Shen. Phys. Rev. A, 98, 023817 (2018).DOI: 10.1103/PhysRevA.98.023817
- [13] H. Gies, F. Karbstein, L. Klar. Phys. Rev. D, 103, 076009 (2021). DOI: 10.1103/PhysRevD.103.076009
- [14] Ch. Sundqvist, F. Karbstein. Phys. Rev. D, 108, 056028 (2023). DOI: 10.1103/PhysRevD.108.056028
- [15] A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt,
 H. Taya, G. Torgrimsson. Phys. Rep., 1010, 1 (2023).
 DOI: 10.1016/j.physrep.2023.01.003
- [16] W.H. Furry. Phys. Rev., 51, 125 (1937).DOI: 10.1103/PhysRev.51.125
- [17] A.N. Hopersky, A.M. Nadolinsky, S.A. Novikov. J. Phys. B, 50, 5801 (2017). DOI: 10.1088/1361-6455/aa606e
- [18] A.N. Hopersky, A.M. Nadolinsky, R.V. Koneev. JETP Lett., 105, 568 (2017). DOI: 10.1134/S0021364017090107
- [19] A.N. Hopersky, A.M. Nadolinsky, V.A. Yavna. JETP Lett., 106, 116 (2017). DOI: 10.1134/S0021364017140065
- [20] А.Н. Хоперский, А.М. Надолинский, Р.В. Конеев. В сб.: VI Международная конф. по фотонике и информац. оптике: Сборник научных трудов (НИЯУ МИФИ, М., 2017), с. 474—475.
- [21] R.A. Rojas Bolivar, D.R. Wink, A. Tümer et. al. Astrophys. J., 954, 76 (2023). DOI: 10.3847/1538-4357/ace969

- [22] D.V. Serbinov, M.N. Pavlinsky, A.N. Semena et. al. Exp. Astron., 51, 493 (2021). DOI: 10.1007/s10686-021-09699-8.
- [23] S. Kühn, Ch. Cheung, N.S. Oreshkina et. al. Phys. Rev. Lett., 129, 245 (2022). DOI: 10.1103/PhysRevLett.129.245001
- [24] P. Micke, S. Kühn, L. Buchauer et. al. Rev. Sci. Instrum., 89, 063109 (2018). DOI: 10.48550/arXiv.2010.15984
- [25] А.Н. Хоперский, А.М. Надолинский, Р.В. Конеев. Опт. и спектр., 131, 1306 (2023). DOI: 10.61011/OS.2023.10.56881.5326-23
- [26] A.L. Fetter, J.D. Waleska. Quantum Theory of Many-Particle System (McGraw-Hill, NY., 1971). DOI: 10.1063/1.3071096
- [27] A.N. Hopersky, A.M. Nadolinsky, S.A. Novikov. Phys. Rev. A, 98, 063424 (2018). DOI: 10.1103/PhysRevA.98.063424
- [28] N. Bloembergen. Nonlinear Optics (World Scientific, Singapore, 1996).
- [29] R. Loudon. *The Quantum Theory of Light* (Oxford Science Publications, 2001).
- [30] M.H. Chen, B. Crasemann, Kh.R. Karim, H. Vark. Phys. Rev. A, 24, 1845 (1981). DOI: 10.1103/PhysRevA.24.1845
- [31] C. Bostedt, J.D. Bozek, P.H. Bucksbaum et al. J. Phys. B, 46, 164003 (2013). DOI: 10.1088/0953-4075/46/16/164003
- [32] A. Rebhan, G. Turk. Int. J. Mod. Phys. A, 32, 1750053 (2017).DOI: 10.48550/arXiv.1701.07375
- [33] J. Ellis, N.E. Mavromatos, T. You. Phys. Rev. Lett., 118, 261802 (2017). DOI:10.1103/PhysRevLett.118.261802
- [34] J. Feldhaus, M. Krikunova, M. Meyer et. al. J. Phys. B, **46**, 164002 (2013). DOI: 10.1088/0953-4075/46/16/164002