¹⁰ Кристаллическая структура, люминесцентные свойства и термометрические характеристики германатов $Ba_2Gd_2Ge_4O_{13}$:Tb³⁺, Tb³⁺/Eu³⁺

© А.В. Чванова, О.А. Липина, А.Ю. Чуфаров, А.П. Тютюнник, Л.Л. Сурат, В.Г. Зубков

Институт химии твердого тела Уральского отделения РАН, Екатеринбург, Россия e-mail: chvanova10 99@mail.ru

Поступила в редакцию 15.04.2024 г. В окончательной редакции 27.05.2024 г. Принята к публикации 27.05.2024 г.

> синтез твердых растворов $Ba_2Gd_{2-x}Tb_xGe_4O_{13}$ (x = 0.05 - 0.2) Впервые осушествлен и $Ba_2Gd_{1.85-y}Tb_{0.15}Eu_yGe_4O_{13}$ (y=0.1-0.6), изучена кристаллическая структура образующихся фаз. По данным рентгенографических исследований установлено, что все образцы изоструктурны Ba₂Gd₂Ge₄O₁₃ и кристаллизуются в моноклинной сингонии, пр. гр. C2/, Z = 4. Спектры фотолюминесценции германатов Ва2Gd2-xTbxGe4O13 состоят из ряда полос в области 365-650 nm, обусловленных переходами ${}^{5}D_{3,4} \rightarrow {}^{7}F_{J}$ в ионах Tb³⁺. По результатам концентрационных исследований установлено, что германат $Ba_2Gd_{1.85}Tb_{0.15}Ge_4O_{13}$ обладает наибольшей интенсивностью эмиссии. Данное содержание Tb^{3+} (x = 0.15) было зафиксировано при синтезе фаз Ba2Gd1.85-yTb0.15EuyGe4O13. Содопирование ионами Eu3+ привело к появлению в спектрах дополнительных люминесцентных линий в области 570-720 nm, связанных с переходами ${}^{5}D_{0} \rightarrow {}^{7}F_{I}$ в ионах европия. При увеличении содержания Eu³⁺ происходит постепенное изменение цветовых координат, что позволяет осуществлять тонкую настройку цвета свечения. Для германата Ba₂Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge₄O₁₃ проведены высокотемпературные исследования (T = 298 - 498 K), по результатам которых построены температурные зависимости интенсивности люминесценции полос при 530-560 nm (переход ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ в Tb³⁺) и 603-640 nm (переход ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ в Eu³⁺), а также их отношения I_{603-640 nm}/I_{530-560 nm}. Рассчитанные максимальные значения абсолютной и относительной чувствительностей составили $0.34\% \times K^{-1}$ и $0.15\% \times K^{-1}$.

Ключевые слова: люминесценция, германат, европий, тербий, термометрия.

DOI: 10.61011/OS.2024.06.58644.6268-24

Введение

Разработка методов, позволяющих проводить точное дистанционное измерение температуры наноразмерных объектов, в настоящее время является ключевой задачей для микроэлектроники, микрооптики и фотоники [1]. Использование традиционных контактных датчиков (например, термисторов и термопар) в случаях, когда размер объекта не превышает $1 \,\mu$ m, затруднено, поскольку в процессе термометрии в результате соприкосновения датчика и объекта устанавливается температурное равновесие, что приводит к искажению фиксируемых значений. Создание люминесцентных термометров, основными достоинствами которых являются неинвазивность, высокая точность, возможность проведения измерений в агрессивных средах и неблагоприятных условиях, а также применимость на микро- и наноуровне, является крайне перспективным направлением исследований [1-5]. Принцип работы люминесцентного датчика основана на измерении зависящих от температуры оптических параметров, которыми могут выступать ширина, интенсивность или положение полосы излучения в спектрах фотолюминесценции, время жизни возбужденного

состояния, отношение интенсивностей двух эмиссионных полос (luminescence intensityratio, LIR) [1–3].

В случае LIR-термометрии в качестве аналитических линий зачастую выступают эмиссионные полосы, детектируемые в спектрах люминесценции соединений, активированных ионами Er^{3+} , Tm^{3+} , Ho^{3+} , Dy^{3+} , Eu^{3+} , Sm^{3+} , Nd^{3+} либо Pr^{3+} [1,2,4,6–11]. Изменение величины LIR происходит в результате частичных внутрицентровых переходов из одного возбужденного состояния 1 в вышележащее термически связанное возбужденное состояние 2, при этом зависимость LIR = f(T) может быть описана [1,2] уравнением

$$LIR = A \exp(-\Delta E_{21}/k_{\rm B}T), \tag{1}$$

где A — константа, ΔE_{21} — энергетический зазор между двумя состояниями иона, $k_{\rm B}$ — постоянная Больцмана, T — температура.

Стоит отметить, что для осуществления термически индуцированного перехода $1 \rightarrow 2$ необходимо, чтобы ΔE_{21} не превышала 2000 сm⁻¹, что накладывает ограничения на значения максимальных абсолютной и относительной чувствительностей [1–6,11,12]:

$$S_a = dLIR/dT = (\Delta E_{21}/k_B T^2)[A \exp(-\Delta E/k_B T)], \quad (2)$$

$$S_r = (1/LIR)(dLIR/dT) = \Delta E_{21}/k_{\rm B}T^2.$$
 (3)

Данное ограничение может быть преодолено за счет введения в состав люминофора дополнительных люминесцирующих ионов и определением отношения интенсивностей полос, обусловленных переходами с термически несвязанных уровней двух различных центров. Среди соединений, перспективных для использования в термометрии, в первую очередь следует выделить кислородсодержащие матрицы, содопированные ионами $Bi^{3+}/Sm^{3+}, Bi^{3+}/Eu^{3+}, Bi^{3+}/Dy^{3+}, Bi^{3+}/Tb^{3+}, Tb^{3+}/Eu^{3+},$ Tb³⁺/Pr³⁺, обладающие высокой термической стабильностью, химической устойчивостью и высокими значениями термометрических характеристик [13-23]. Более того, в люминофорах, активированных двумя и более видами ионов, существует возможность тонкой настройки цвета свечения путем варьирования концентрации допантов. Ионы Eu³⁺ и Tb³⁺являются наиболее часто используемыми активаторами из-за их характерной эмиссии в области 480-650 и 570-720 nm соответственно. Возбуждение в обоих случаях осуществляется УФ излучением [24]. В литературе представлены данные по люминесцентным свойствам соединений $Y_2BaAl_4SiO_{12}:Tb^{3+}/Eu^{3+}$, $Li_3Lu_3Te_2O_{12}:Tb^{3+}/Eu^{3+}$, NaCaGd(WO₄)₃:Tb³⁺/Eu³⁺ [25–27], которые являются перспективными люминофорами с настраиваемыми цветовыми характеристиками и могут быть использованы для создания светодиодов белого свечения (wLED).

В настоящей работе изучена кристаллическая структура И оптические свойства соединений $Ba_2Gd_2Ge_4O_{13}:Tb^{3+}$, Tb^{3+}/Eu^{3+} . Установлено влияние концентрации допантов, длины волны возбуждающего излучения, температуры на люминесцентные характеристики порошков. Отметим, что впервые особенности кристаллического строения тетрагерманатов $Ba_2RE_2Ge_4O_{13}$ (RE = Pr, Nd, Eu, Gd, Dy, Y) были проанализированы в работах [28-30]. По результатам проведенных рентгенографических исследований было показано, что кристаллическая решетка соединений состоит из групп [Ge₄O₁₃], димеров [RE₂O₁₂] и атомов бария, координированных десятью атомами кислорода. Авторами [30] была продемонстрирована высокая температурная устойчивость люминесцентных характеристик соединений Ba₂Gd₂Ge₄O₁₃:Dy³⁺ и Ва₂Y₂Ge₄O₁₃:Dy³⁺. При нагреве до 423 К спад интенсивности люминесценции не превышал 10% от первоначального значения, измеренного при комнатной температуре, а смещение цветовых координат составило всего лишь $\Delta x \le 0.0055$ и $\Delta y \le 0.0050$. В работе [7] была изучена возможность применения тетрагерманата $Ba_2Gd_2Ge_4O_{13}$, активированного ионами Sm³⁺, в качестве материала для чувствительного элемента бесконтактного датчика температуры. По результатам исследований было установлено, что люминофор обладает высоким значением относительной чувствительности, $S_r(\max) = 1.57\% \times K^{-1}$, а измерения величины LIR хорошо воспроизводятся при много-

Рис. 1. Общий вид кристаллических структур $Ba_2Gd_{2-x}Tb_xGe_4O_{13}$ и $Ba_2Gd_{1.85-y}Tb_{0.15}Eu_yGe_4O_{13}$ вдоль направления [010].

кратных повторениях. Всё вышесказанное указывает на возможность создания на основе $Ba_2RE_2Ge_4O_{13}$ перспективных люминофоров как для светоизлучающих диодов, так и для бесконтактной термометрии.

Объекты и методы

Германаты Ba₂Gd_{2-x}Tb_xGe₄O₁₃ (x = 0.05 - 0.2) и Ba₂Gd_{1.85-y}Tb_{0.15}Eu_yGe₄O₁₃ (y = 0.1 - 0.6) были получены твердофазным методом. Для синтеза порошков были использованы следующие вещества: BaCO₃ (99.9%), Gd₂O₃ (99.999%), Tb₄O₇ (99.998%), Eu₂O₃ (99.99%), GeO₂ (99.9%). Оксид Tb₄O₇ предварительно восстанавливали до Tb₂O₃, отжигая в потоке Ar/H₂ при 1573 K в течение 24h. Исходные оксиды и карбонат бария, взятые в стехиометрических количествах, смешивали в ступке и тщательно перетирали с добавлением этилового спирта, а затем подвергали стадийному отжигу в интервале температур 1073–1473 K с шагом 100 K. Промежуточные перетирания осуществляли после каждой стадии синтеза.

Рентгенофазовый анализ синтезированных соединений осуществляли с помощью дифрактометра STADI-P (STOE), оснащенного линейным позиционночувствительным детектором. Съемка проводилась в $CuK_{\alpha 1}$ излучении в интервале углов $2\theta = 5^{\circ} - 120^{\circ}$ с шагом 0.02° . В качестве внутреннего стандарта использовали поликристаллический кремний с параметром элементарной ячейки a = 5.43075(5) Å. Уточнение структуры выполняли с использованием программного пакета PowderCell 2.4 [31] с использованием данных для Ba₂Gd₂Ge₄O₁₃ [29].

Спектры фотолюминесценции и спектры возбуждения образцов, а также кривые затухания фотолюминесценции были получены с использованием импульсного флуоресцентного спектрофотометра Cary Eclipse (Varian, США): источник возбуждения — импульсная ксеноновая лампа мощностью 75 kW, детектор — ФЭУ R928. Для проведения измерений в диапазоне 298–498 К использовали термостат с оптическими окнами GS-21525 (Specac Ltd, Великобритания).

Результаты и их обсуждение

Описание кристаллической структуры

По результатам рентгеноструктурного анализа было установлено, что твердые растворы Ba₂Gd_{2-x}Tb_xGe₄O₁₃ (x = 0.05 - 0.2)И $Ba_2Gd_{1.85-v}Tb_{0.15}Eu_vGe_4O_{13}$ (y = 0.1 - 0.6)кристаллизуются в моноклинной сингонии, пр. гр. C2/c, Z = 4. Все соединения являются изоструктурными Ba2Gd2Ge4O13. Учитывая близость кристаллических радиусов ионов Gd^{3+} (*CR* = 1.14 Å), Tb^{3+} (*CR* = 1.12 Å) и Eu³⁺ (*CR* = 1.15 Å) [32], можно предположить, что ионы-допанты занимают позиции гадолиния в кристаллической решетке Ba2Gd2Ge4O13. Как видно из представленных в табл. 1 данных, по мере увеличения концентрации Тb³⁺ происходит постепенное уменьшение параметров и объема элементарной ячейки фаз Ba₂Gd_{2-x}Tb_xGe₄O₁₃, в то время как замещение ионов Gd³⁺ ионами Eu³⁺в германатах $Ba_2Gd_{1.85-v}Tb_{0.15}Eu_vGe_4O_{13}$ способствует их постепенному увеличению.

Кристаллическая структура синтезированных соединений продемонстрирована на рис. 1. Все атомы ячейки занимают общие позиции, за исключением атомов O(3), через которые параллельно направлению [010] проходит поворотная ось второго порядка. Атомы O(3) являются мостиковыми атомами, связывающими между собой два эквивалентных фрагмента тетрагруппы Ge₄O₁₃. Атомы редкоземельных элементов координированы семью атомами кислорода и образуют димеры RE₂O₁₂. Объединяясь друг с другом посредством тетраэдров GeO₄, они формируют гетерополиэдрический каркас. Атомы Ва занимают пустоты между многогранниками (координационное число равно 10).

Рис. 2. Спектры люминесценции ($\lambda_{ex} = 312 \text{ nm}$) образцов Ba₂Gd_{2-x}Tb_xGe₄O₁₃. На вставке — зависимости интенсивности эмиссии от концентрации в диапазонах 365–480 и 480–650 nm.

Спектрально-люминесцентные свойства Ba₂Gd_{2-x}Tb_xGe₄O₁₃

Под действием УФ излучения ($\lambda_{ex} = 312 \text{ nm}$) германаты Ba₂Gd_{2-x}Tb_xGe₄O₁₃ люминесцируют в диапазоне длин волн 365-650 nm (рис. 2). Наиболее интенсивная линия для всех образцов расположена в области 530-560 nm и обусловлена переходом ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ в ионах Tb³⁺. Ряд полос с максимумами при 487, 583 и 620 nm также является следствием внутри центровых переходов с возбужденного уровня ${}^{5}D_{4}$. Помимо этого, в спектрах фотолюминесценции $Ba_2Gd_{2-x}Tb_xGe_4O_{13}$ присутствуют пики в коротковолновой области спектра, связанные с переходами ${}^{5}D_{3} \rightarrow {}^{7}F_{6}$ (379 nm), ${}^{5}D_{3} \rightarrow {}^{7}F_{5}$ (416 nm), ${}^{5}D_{3} \rightarrow {}^{7}F_{4}$ (437 nm) $\mu {}^{5}D_{3} \rightarrow {}^{7}F_{3}$ (462 nm). По результатам исследований зависимости от концентрации было установлено, что наибольшей интенсивностью свечения обладает образец состава Ba2Gd1.85Tb0.15Ge4O13, в то время как для германата с максимальной концентрацией допанта (x = 0.2) наблюдается уменьшение интенсивности люминесценции во всем изученном диапазоне длин волн вследствие концентрационного тушения и кросс-релаксационного процесса: ${}^{5}D_{3}(\mathrm{Tb}^{3+}) + {}^{7}F_{6}(\mathrm{Tb}^{3+}) \rightarrow {}^{5}D_{4}(\mathrm{Tb}^{3+}) + {}^{7}F_{0}(\mathrm{Tb}^{3+}),$ детально описанного в работе [33].

Спектрально-люминесцентные свойства $Ba_2Gd_{1.85-y}Tb_{0.15}Eu_yGe_4O_{13}$

В качестве примера на рис. 3.aпродемонстрирован спектр люминесценции образца $Ba_2Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge_4O_{13}$, снятый в диапазоне $460-750 \,\mathrm{nm}$ под воздействием излучения с $\lambda_{\mathrm{ex}} = 377 \,\mathrm{nm}$. Видно, что допирование Ba2Gd1.85Tb0.15Ge4O13 ионами Eu³⁺ приводит к появлению в спектрах люминесценции

Концентрация допанта	a, Å	b, Å	c, Å	β	V, Å ³		
$Ba_2Gd_{2-x}Tb_xGe_4O_{13}$							
0.05	13.0751(4)	5.3667(2)	17.9938(6)	105.086(2)°	1219.11(7)		
0.1	13.0743(5)	5.3668(2)	17.9924(8)	105.083(4)°	1218.98(10)		
0.15	13.0736(8)	5.3665(3)	17.9922(12)	105.091(4)°	1218.79(14)		
0.2	13.0726(5)	5.3677(2)	17.9902(8)	105.146(3)°	1218.52(9)		
$Ba_2Gd_{1.85-y}Tb_{0.15}Eu_yGe_4O_{13}$							
0.1	13.0732(4)	5.3654(2)	17.9897(6)	105.086(3)°	1218.36(7)		
0.2	13.0710(3)	5.3691(2)	17.9925(7)	105.168(2)°	1218.72(7)		
0.3	13.0757(5)	5.3676(2)	17.9919(7)	105.111(3)°	1219.11(8)		
0.4	13.0783(5)	5.3694(2)	17.9951(8)	105.142(3)°	1219.79(9)		
0.5	13.0765(4)	5.3694(2)	17.9944(7)	105.141(2)°	1219.57(7)		
0.6	13.0814(5)	5.3679(2)	17.9918(8)	105.090(3)°	1219.82(9)		

Таблица 1. Параметры кристаллических решеток для твердых растворов Ba₂Gd_{2-x}Tb_xGe₄O₁₃ и Ba₂Gd_{1.85-y}Tb_{0.15}Eu_yGe₄O₁₃

Рис. 3. Спектр люминесценции германата $Ba_2Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge_4O_{13}$, $\lambda_{ex} = 377$ nm (*a*); спектры возбуждения $Ba_2Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge_4O_{13}$, $\lambda_{em} = 542$ (*b*), 614 nm (*c*); зависимости интегральной интенсивности линий при 542 (*d*) и 614 nm от концентрации (*e*).

дополнительных полос в области 570–720 nm, обусловленных переходами с возбужденного ${}^{5}D_{0}$ -уровня на уровни ${}^{7}F_{J}$ (J = 0 - 4) в ионах Eu³⁺. На рис. 3, *b*, *c* представлены спектры возбуждения образца, полученные при регистрации излучения с $\lambda_{\rm em} = 542$ nm (переход ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ в Tb³⁺) и 614 nm

(переход ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ в Eu³⁺). Отметим, что форма спектров существенно зависит от выбранной $\lambda_{\rm em}$. Спектр возбуждения, снятый при регистрации эмиссии в области 542 nm (рис. 3, *b*), содержит широкую полосу в диапазоне 200–260 nm. Предполагаемый механизм возбуждения в данной области вероятнее

всего связан с переносом заряда от ионов кислорода к ионам европия и последующей передачей энергии ионам Tb³⁺. Кроме того, в указанном диапазоне длин волн могут находиться полосы, связанные спин-разрешенными электронными переходами $4f^{\,8}(^7F_6)
ightarrow 4f^{\,7}(^8S)5d(^7D)$ в ионах Tb^{3+} . Ряд узких пиков в области 270-330 nm соответствует переходам ${}^8S_{7/2} \rightarrow {}^6D_{7/2}$ и ${}^8S_{7/2} \rightarrow {}^6I_{9/2}$ в ионах Gd^{3+} , их наличие и высокая интенсивность свидетельствует о значительной эффективности процесса передачи энергии от Gd³⁺ к Tb³⁺. Дополнительным подтверждением того, что ионы Gd³⁺ поглощают энергию и эффективно передают её ионам содопантам, является то, что возбуждение образцов излучением с $\lambda_{ex} = 275 \, \text{nm}$ не сопровождается эмиссией в области 300-320 nm (переход ${}^6P_{7/2} \rightarrow {}^8S_{7/2}$ ионах Gd³⁺). Сенсибилизация люминесценции в ионов Tb³⁺ ионами Gd³⁺ ранее наблюдалась для люминофоров $Na_3Gd(BO_3)_2:Tb^{3+}$, $LaAlGe_2O_7:Gd^{3+}$, Tb^{3+} , (La,Gd)PO₄: Tb^{3+} [34–36]. В длинноволновой области спектра возбуждения (330 - 390 nm)присутствует также широкая полоса, соответствующая переходам $4f \rightarrow 4f$ в ионах Tb^{3+} : ${}^7F_6 \rightarrow {}^5L_9$ (352 nm), ${}^{7}F_{6} \rightarrow {}^{5}L_{10}$ (364 nm) и ${}^{7}F_{6} \rightarrow {}^{5}D_{3}$ (377 nm). В спектре возбуждения, полученном при регистрации эмиссии с $\lambda_{\rm em} = 614 \, \rm nm$ (рис. 3, *c*), наблюдается широкая интенсивная полоса переноса заряда и ряд узких пиков, связанных с переходами $4f \rightarrow 4f$ в ионах Gd^{3+} , Tb³⁺ μ Eu³⁺ : ${}^{8}S_{7/2} \rightarrow {}^{6}I_{9/2}$ (275 nm, Gd³⁺), ${}^{8}S_{7/2} \rightarrow {}^{6}P_{7/2}$ (312 nm, Gd³⁺), ${}^{7}F_{0} \rightarrow {}^{5}D_{4}$ (362 nm, Eu³⁺), ${}^{7}F_{6} \rightarrow {}^{5}D_{3}$ (377 nm, Tb³⁺), ${}^{7}F_{0} \rightarrow {}^{5}L_{7}$ (381 nm, Eu³⁺), ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ (394 nm, Eu³⁺), ${}^{7}F_{0} \rightarrow {}^{5}D_{3}$ (393 nm, Eu³⁺).

По результатам исследований зависимости от концентрации выявлено, что увеличение концентрации содопанта в фазах Ba2Gd_{1.85-v}Tb_{0.15}Eu_vGe₄O₁₃ приводит к постепенному снижению интенсивности свечения в области 480-560 nm, в то время как интенсивность люминесценции в области 570-720 nm увеличивается и достигает своего максимума при у = 0.5 (рис. 3, d, e). Таким образом, варьируя содержание Eu³⁺, можно осуществлять целенаправленную настройку цвета свечения. При проведении дальнейших исследований возбуждение люминесценции образцов осуществлялось излучением с $\lambda_{ex} = 377 \, \text{nm}$, поскольку в этом случае достигалось интенсивное свечение образцов $Ba_2Gd_{1.85-v}Tb_{0.15}Eu_vGe_4O_{13}$ в широком диапазоне длин волн. Для люминофоров Ba₂Gd_{1.85-v}Tb_{0.15}Eu_vGe₄O₁₃ были определены координаты цветности и коррелированная цветовая температура (ССТ) в сравнении с Международным стандартом СІЕ 1931 г. Расчет коррелированной цветовой температуры проводился [37] по формуле

$$CCT = -449n^3 + 3525n^2 - 6823.3n + 5520.33, \qquad (4)$$

$$n = \frac{x - x_e}{y - y_e},\tag{5}$$

где x_e и y_e — координаты "эпицентра" на диаграмме цветности белого источника света, равные 0.332 и

Таблица	2.	Цветовые	параметры	люминофоров
Ba2Gd1.85-2	Tb _{0.15} E	$u_y \text{Ge}_4 \text{O}_{13} (y =$	= $0.1 - 0.6$), λ_e	x = 377 nm

у	Координаты цветности	CCT
0.1	(0.528; 0.426)	2056
0.2	(0.603; 0.378)	1649
0.3	(0.634; 0.357)	1988
0.4	(0.648; 0.347)	2308
0.5	(0.654; 0.343)	2473
0.6	(0.656; 0.341)	2552

Рис. 4. Диаграммы уровней энергии ионов Tb^{3+} , Eu^{3+} и процесс переноса энергии в люминофорах $Ba_2Gd_{1.85-y}Tb_{0.15}Eu_yGe_4O_{13}$.

0.1858 соответственно, *х* и *у* — координаты цветности исследуемого образца. Полученные данные сведены в табл. 2.

Диаграммы энергетических уровней ионов Tb³⁺и Eu³⁺ показаны на рис. 4. При облучении германатов излучением с длиной волны 377 nm ионы Tb³⁺ первоначально возбуждаются и переходят из основного состояния ⁷*F*₆ в возбужденное состояние ⁵*D*₃. После чего в результате безызлучательной релаксации или кросс-релаксации ⁵*D*₃(Tb³⁺) +⁷*F*₆(Tb³⁺) \rightarrow ⁵*D*₄(Tb³⁺) +⁷*F*₀(Tb³⁺) происходит заполнение состояния ⁵*D*₄. Переход из данного состояния на нижележащие уровни ⁷*F*_{3,4,5,6} приводит к появлению эмиссии в диапазоне 480–650 nm. Одновременно с этим существует возможность передачи энергии от Tb³⁺ к Eu³⁺, поскольку область возбуждения и излучения ионов Tb³⁺ перекрывается с областью возбуж-

Рис. 5. Спектры люминесценции германата Ba₂Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge₄O₁₃, зарегистрированные при различной температуре нагрева (*a*); температурные зависимости интегральных интенсивностей люминесцентных линий, обусловленных переходами ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (603–640 nm) в ионах Eu³⁺ и переходами ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (530–560 nm) в ионах Tb³⁺ (*b*); температурные зависимости отношения интенсивностей двух аналитических линий (*c*); температурные зависимости абсолютной (*S_a*) и относительной (*S_r*) чувствительностей измерения температуры (*d*, *e*).

дения ионов Eu³⁺ [38]. В результате последующих безызлучательных переходов происходит заполнение уровня ${}^{5}D_{0}$ в ионах Eu³⁺, переход с которого на нижележащие уровни ${}^{7}F_{J}$ приводит к появлению люминесценции в области 570–720 nm.

На рис. 5, а показаны спектры люминесценции германата $Ba_2Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge_4O_{13}$, снятые в режиме ступенчатого нагрева до 473 К. Как видно из представленных спектров, с ростом температуры происходит постепенный спад интенсивности свечения во всем исследованном диапазоне длин волн. Стоит отметить, что интенсивность люминесцентных линий, обусловленных электронными переходами в разнотипных ионах, снижается неравномерно (рис. 5, *b*). При $T = 473 \,\mathrm{K}$ интенсивность полосы в области 603-640 nm (переход в Eu³⁺) составляет 69.9% от первоначального значения, в то время как интенсивность полосы в области 530-560 nm (переход в Тв³⁺) — 62.5%. На рис. 5, с продемонстрировано как изменяется отношение LIR = $I_{603-640 \text{ nm}}(Eu^{3+})/I_{530-560 \text{ nm}}(\text{Tb}^{3+})$ с температурой. Полученная зависимость хорошо описывается

 $(R_2 \ge 99.7\%)$ следующим уравнением [39,40]:

$$LIR = \frac{I_{\rm Eu}}{I_{\rm Tb}} = \frac{I_{0\rm Eu} \left[1 + C_{\rm Tb} \exp\left(\frac{-\Delta E_{\rm Eu}}{k_{\rm B}T}\right) \right]}{I_{0\rm Tb} \left[1 + C_{\rm Eu} \exp\left(\frac{-\Delta E_{\rm Tb}}{k_{\rm B}T}\right) \right]},\tag{6}$$

где $I_{0\rm Eu}$ и $I_{0\rm Tb}$ — начальные интенсивности соответствующих линий, $C_{\rm Eu}$ и $C_{\rm Tb}$ — константы, $\Delta E_{\rm Eu}$ и $\Delta E_{\rm Tb}$ — энергии активации температурного тушения, $k_{\rm B}$ — постоянная Больцмана, T — температура.

Зависимости относительной и абсолютной чувствительностей представлены на рис. 5, *d*, *e*. Значения относительной и абсолютной чувствительностей уменьшаются с температурой.

Абсолютная И относительная чувствительности определения температуры для образца Ba₂Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge₄O₁₃ были оценены ИЗ уравнений (2), (3). Все полученные значения S_a и S_r представлены в табл. 3 совместно с ранее опубликованными данными для соединений, допированных Eu³⁺/Tb³⁺ [19–23]. Согласно полученным результатам, максимальные значения S_a и S_r, равные 0.34 и

Соединение	$S_a \ (\max), \ \% \times \mathrm{K}^{-1}$	$S_r (\max), \% \times \mathrm{K}^{-1}$	T-range, K	Источник
$Ca_8ZnLa(PO_4)_7{:}Tb^{3+}/Eu^{3+}$	—	0.53	298-448	[19]
$BaY_2(MoO_4){:}Tb^{3+}/Eu^{3+}$	6.02 (293 K)	1.06 (256 K)	89-293	[20]
$Sr_3MoO_6:Tb^{3+}/Eu^{3+}$	0.27	0.24	14-300	[21]
$Ca_2Al_2SiO_7{:}Tb^{3+}/Eu^{3+}$	0.54	1.17	303-483	[22]
Gd_2O_3 : Tb^{3+}/Eu^{3+}	0.19	2.44 (473 K)	123-473	[23]
$Ba_2Gd_2Ge_4O_{13}:Tb^{3+}/Eu^{3+}$	0.34 (298 K)	0.15 (298 K)	298-473	Настоящая работа

Таблица 3. Термометрические характеристики различных соединений, активированных ионами Tb³⁺/Eu³⁺

 $0.15\% \times K^{-1}$ соответственно, достигаются при 298 К. Полученные значения абсолютной чувствительности не позволяют говорить о перспективности использования $Ba_2Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge_4O_{13}$ в качестве материала для бесконтактной термометрии, однако можно говорить об устойчивости цветовых характеристик образца.

На заключительном этапе работы для германата Ва₂Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge₄O₁₃ были измерены кривые затухания люминесценции с $\lambda_{em} = 542$ и 614 nm (рис. 6). Для описания всех зависимостей была использована [41] следующая функция:

$$I(t) = A_1 \exp\left(\frac{-t}{\tau_1}\right) + A_2 \exp\left(\frac{-t}{\tau_2}\right),\tag{7}$$

где I(t) — интенсивность люминесценции в момент времени t, A_1 и A_2 — константы, τ_1 и τ_2 — времена затухания экспоненциальных составляющих.

Среднее значение времени жизни τ_{av} :

$$\tau_{av} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2},\tag{8}$$

изменялось от 1.25 до 1.18 ms и от 1.46 до 1.32 ms для эмиссии с длинами волн 542 и 614 nm соответственно, что связано с увеличением вероятности безызлучательных переходов по мере увеличения температуры.

Выводы

Германаты Ba₂Gd_{2-x}Tb_xGe₄O₁₃ (x = 0.05 - 0.2) и Ba₂Gd_{1.85-y}Tb_{0.15}Eu_yGe₄O₁₃ (y = 0.1 - 0.6) синтезированы по стандартной керамической технологии. Согласно данным порошковой рентгеновской дифракции, все соединения кристаллизуются в моноклинной сингонии, пр. гр. C2/c, Z = 4. Под действием УФ излучения германаты люминесцируют в области 450-730 nm. Спектры люминесценции соединений Ba₂Gd_{1.85-y}Tb_{0.15}Eu_yGe₄O₁₃ содержат характерные пики ионов Eu³⁺, обусловленные переходами с уровня ⁵D₀ на ⁷F_J (J = 0 - 4), а также пики, связанные с переходами в ионах Tb³⁺ с уровня ⁵D₄ на ⁷F_J (J = 3 - 6). Обнаружено, что максимальной интенсивностью свечения в области

Рис. 6. Кривые затухания люминесценции люминофора $Ba_2Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge_4O_{13}$, измеренные при температурах 298 и 473 K, $\lambda_{em} = 614$ (*a*), 542 nm (*b*). На вставках — зависимости τ_{av} от температуры.

480-650 nm обладает Ba₂Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge₄O₁₃. Для всех образцов были рассчитаны координаты цветности и коррелированная цветовая температура, по результатам исследований выявлено, что люминофоры Ва₂Gd_{1.85-у}Tb_{0.15}Eu_yGe₄O₁₃ являются перспективными материалами с перестраиваемым цветом свечения.

Для образца Ba₂Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge₄O₁₃ проведены исследования зависимости оптических характеристик от температуры. Обнаружено, что увеличение температуры приводит к росту отношения $I_{603-640 \text{ nm}}(\text{Eu}^{3+})/I_{530-560 \text{ nm}}(\text{Tb}^{3+})$. Рассчитанные значения чувствительностей достигают максимальных значений при комнатной температуре и составляют $0.34\% \times \text{K}^{-1}$ (S_a) и $0.15\% \times \text{K}^{-1}$ (S_r). Для германата Ba₂Gd_{1.75}Tb_{0.15}Eu_{0.1}Ge₄O₁₃ были также измерены кривые затухания люминесценции для излучения с $\lambda_{\text{em}} = 614 \text{ nm}$ (переход ${}^5D_0 \rightarrow {}^7F_2$ в Eu³⁺) и $\lambda_{\text{em}} = 542 \text{ nm}$ (переход ${}^5D_4 \rightarrow {}^7F_5$ в Tb³⁺), в обоих случаях рассчитанное время жизни постепенно уменьшается с увеличением температуры.

Финансирование работы

Исследование люминесцентных характеристик проведено за счет гранта Российского научного фонда № 23-73-10090, https://rscf.ru/project/23-73-10090/. Рентгенографические исследования выполнены в рамках государственного задания ИХТТ УрО РАН, тема 124020600024-5.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- C.D.S. Brites, A. Millán, L.D. Carlos. Handb. Phys. Chem. Rare Earths, 49, 339–427 (2016).
 DOI: 10.1016/bs.hpcre.2016.03.005
- [2] M. Dramićanin. Lanthanide and Transition Metal Ion Doped Materials for Luminescence Temperature Sensing, Luminescence Thermometry: Methods, Materials, and Applications (Woodhead Publishing Series in Electronic and Optical Materials, 2018), ch. 6, p. 113–157. DOI: 10.1016/B978-0-08-102029-6.00006-3
- [3] V.K. Rai, S.B. Rai. Appl. Phys. B, 87, 323–325 (2007).
 DOI: 10.1007/s00340-007-2592-z
- [4] Y. Cui, F. Zhu, B. Chen, G. Qian. Chem. Commun., 51, 7420-7431 (2015). DOI: 10.1039/c5cc00718f
- [5] P. Du, J. Tang, W. Li, L. Luo. Chem. Eng. J., 406, 127165 (2021). DOI: 10.1016/j.cej.2020.127165
- [6] Q. Xiao, X. Yin, L. Lav, X. Dong, N. Zhou, K. Liu, X. Luo.
 J. Rare Earths, 41 (7), 981–988 (2023).
 DOI: 10.1016/j.jre.2022.04.013
- [7] A.V. Chvanova, O.A. Lipina, A.Yu. Chufarov, A.P. Tyutyunnik, Ya.V. Baklanova, L.L. Surat, V.G. Zubkov. Russ. J. Inorg. Chem., 68, 325–333 (2023).
 DOI: 10.1134/S003602362260246X
- [8] O.A. Lipina, T.S. Spiridonova, Ya.V. Baklanova, E.G. Khaikina. Russ. J. Inorg. Chem., 68, 529–537 (2023). DOI:10.1134/S0036023623600508
- [9] O.A. Lipina, Ya.V. Baklanova, T.S. Spiridonova, E.G. Khaikina. Cryst. Eng. Commun., 26 (3), 277–285 (2024).
 DOI: 10.1039/D3CE01020A

- [10] O.A. Lipina, L.L. Surat, A.Yu. Chufarov, I.V. Baklanova, A.N. Enyashin, M.A. Melkozerova, A.P. Tyutyunnik, V.G. Zubkov. Dalton Trans., **52** (22), 7482–7494 (2023). DOI: 10.1039/D3DT00269A
- W. Xu, X. Zhu, D. Zhao, L.J. Zheng, F.K. Shang, Z.G. Zhang. J. Rare Earths, 40 (2), 201–210 (2022). DOI: 10.1016/j.jre.2020.12.011
- [12] L. Zhao, B. Lou, J. Mao, B. Jiang, X. Wei, Y. Chen, M. Yin. Mater. Res. Bull., **109**, 103–107 (2019).
 DOI: 10.1016/j.materresbull.2018.09.032
- [13] M. Song, W. Zhao, J. Xue, L. Wang, J. Wang, J. Lumin., 235, 118014 (2021). DOI: 10.1016/j.jlumin.2021.118014
- Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, Y. Wang. Adv. Funct. Mater., 26, 3139–3145 (2016).
 DOI: 10.1002/adfm.201505332
- [15] J. Xue, H.M. Noh, B.C. Choi, S.H. Park, J.H. Kim, J.H. Jeong, P. Du. Chem. Eng. J., 382, 122861 (2020). DOI: 10.1016/j.cej.2019.122861
- [16] Y. Chen, Y. Shen, L. Zhou, J. Lin, J. Fu, Q. Fang, R. Ye, Y. Shen, S. Xu, L. Lei, D. Deng. J. Lumin., 249, 118995 (2022). DOI: 10.1016/j.jlumin.2022.118995
- [17] X. Zhang, Y. Xu, X. Wu, S. Yin, C. Zhong, C. Wang, L. Zhou, H. You. Chem. Eng. J., 481, 148717 (2024).
 DOI: 10.1016/j.cej.2024.148717.
- [18] Y. Luo, D. Zhang, S. Xu, L. Li, L. Chen, H. Guo. J. Lumin., 257, 119780 (2023). DOI: 10.1016/j.jlumin.2023.119780
- [19] L. Li, X. Tang, Z. Wu, Y. Zheng, S. Jiang, X. Tang, G. Xiang, X. Zhou. J. Alloys Compd., **780**, 266–275 (2019).
 DOI: 10.1016/j.jallcom.2018.11.378
- J. Wang, M. Song, H.J. Seo. J. Lumin., 222, 117185 (2020).
 DOI: 10.1016/j.jlumin.2020.117185
- [21] D.V.M. Paiva, S.K. Jakka, M.A.S. Silva, J.P.C. Nascimento, M.P.F. Graça, A.S.B. Sombra, M.J. Soares, S.E. Mazzetto, P.B.A. Fechine, K. Pavani. Optik, **246**, 167825–167832 (2021). DOI: 10.1016/j.ijleo.2021.167825
- J. Deng, Z. Wang, W. Zhou , M. Yu, J. Min, X. Jiang , Z. Xue, C. Ma, Z. Cheng, G. Luo. Ceram. Int., 49 (9), 14478–14486 (2023). DOI: 10.1016/j.ceramint.2023.01.036
- [23] I.E. Kolesnikov, D.V. Mamonova, M.A. Kurochkin, V.A. Medvedev, E.Yu. Kolesnikov. J. Alloys Compd., 922, 166182 (2022). DOI: 10.1016/j.jallcom.2022.166182
- [24] Y. Gao, X. Zhu, H. Shi, P. Jiang, R. Cong, T. Yang, J. Lumin., 242, 118598 (2022). DOI: 10.1016/j.jlumin.2021.118598
- [25] J. Wang, X. Peng, D. Cheng, Z. Zheng, H. Guo. J. Rare Earths, 39 (3), 284–290 (2021). DOI: 10.1016/j.jre.2020.06.010
- M. Qu, X. Zhang, X. Mi, H. Sun, Q. Liu, Z. Bai. J. Alloys Compd., 872, 159506 (2021).
 DOI: 10.1016/j.jallcom.2021.159506
- [27] J. Xie, L. Cheng, H. Tang, Z. Wang, H. Sun, L. Lu, X. Mi, Q. Liu, X. Zhang. Inorg. Chem. Front., 8, 4517–4527 (2021). DOI: 10.1039/D1QI00831E
- [28] A.P. Tyutyunnik, A.Yu. Chufarov, L.L. Surat, O.A. Lipina, V.G. Zubkov. Mendeleev Commun., 28 (6), 661 (2018). DOI: 10.1016/j.mencom.2018.11.035
- [29] O.A. Lipina, A.V. Chvanova, M.A. Melkozerova, A.Yu. Chufarov, Y.V. Baklanova, L.L. Surat, A.P. Tyutyunnik, V.G. Zubkov, A.N. Enyashin, L.Yu. Mironov, K.G. Belova. Dalton Trans., 50, 10935 (2021). DOI: 10.1039/d1dt01780
- [30] H. Tang, H. Li, R. Song, Z. Yang, R. Zhao, Z. Guo, J. Li, B. Wang, J. Zhu. Ceram. Int., 49 (19), 31898–31906 (2023). DOI: 10.1016/j.ceramint.2023.07.152
- [31] W. Kraus, G. Nolze. J. Appl. Cryst., 29, 301–303 (1996).
 DOI: 10.1107/S0021889895014920

- [32] R.D. Shannon. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr., 32, 751–767 (1976).
 DOI: 10.1107/S0567739476001551
- [33] Q. Li, L. Jiang, S. Zhu, H. Tang, W. Zhang. J. Mater. Sci.: Materials in Electronics, 29, 16956–16961 (2018).
- [34] Q. Shi, F. You, S. Huang, J. Cui, Y. Huang, Y. Tao. J. Alloys Compd., 654, 441–444 (2016).
- [35] Y.C. Li, Y.S. Chang, Y.C. Lai, Y.J. Lin, C.H. Laing, Y.H. Chang. Mater. Sci. Eng. B, 146, 225–230 (2008).
- [36] Q. Shi, F. You, S. Huang, H. Peng, Y. Huang, Y. Tao. J. Lumin., 152, 138–141 (2014).
- [37] C.S. McCamy. Color Res. Appl., 17, 42 (1992).DOI: 10.1002/col.5080170211
- [38] L. Vijayalakshmi, K. Naveen Kumar, P. Hwang. Scripta Mater., 187, 97–102 (2020).
- DOI: 10.1016/j.scriptamat.2020.06.014
- [39] Y. Hu, X. Li, K. Wang, Z. Guan, H. Yu, Y. Zhang, S. Xu, B. Chen. J. Lumin., 257, 119722 (2023).
 DOI: 10.1016/j.jlumin.2023.119722
- [40] O.A. Lipina, A.V. Chvanova, L.L. Surat, Ya.V. Baklanova, A.Yu. Chufarov, A.P. Tyutyunnik, V.G. Zubkov. Dalton Trans., 53, 7985–7995 (2024). DOI: 10.1039/d4dt00258j
- [41] Encyclopedia of Spectroscopy and Spectrometry. Eds: J.C. Lindon, G.E. Tranter, D.W. Koppenaal (Elsevier Ltd., 2017).