18

Влияние ангармонизма колебаний ОН-групп молекул растворителя на люминесцентные свойства полупроводниковых коллоидных квантовых точек сульфида свинца в ближней ИК области

© И.Г. Гревцева, О.В. Овчинников, М.С. Смирнов, К.С. Чирков, А.Н. Латышев

Воронежский государственный университет, Воронеж, Россия e-mail: grevtseva_ig@inbox.ru

Поступила в редакцию 27.03.2024 г. В окончательной редакции 11.04.2024 г. Принята к публикации 14.06.2024 г.

Рассмотрено влияние ангармонизма колебаний ОН-групп молекул растворителя на величину квантового выхода и времени затухания ИК люминесценции водных растворов коллоидных квантовых точек сульфида свинца, пассивированных молекулами 2-меркаптопропионовой кислоты (КТ PbS/2-MPA). Показано, что смещение в длинноволновую область полосы обертонов колебательных мод растворителя относительно полосы люминесценции КТ PbS/2-MPA (950 nm) при замене растворителя с H₂O на D₂O приводит к росту квантового выхода от 2 до 5%, увеличению времени затухания люминесценции от 2.4 до $6.0 \, \mu$ s и уменьшению константы безызлучательной рекомбинации в 2.5 раза. При этом аппроксимация кривых затухания люминесценции КТ PbS/2-MPA демонстрирует наибольшее согласие с экспериментальными данными при учете в законе затухания люминесценции статистического распределения по числу OH-групп молекул растворителя относительно КТ. Численные расчеты интеграла перекрытия спектра люминесценции донора (КТ PbS/2-MPA) со спектром экстинкции акцептора (обертоны OH-колебаний) показали значения радиуса Фёрстера $R_0 = 0.4$ nm, что свидетельствует об адсорбции молекул растворителя на поверхности КТ при их растворении в нем. Полученные данные указывают на реализацию диполь-дипольного механизма безызлучательного переноса энергии электронного возбуждения от КТ PbS/2-MPA к обертонам OH-колебаний растворителя, распложенных в окружающем объеме КТ.

Ключевые слова: люминесценция, квантовый выход, время затухания люминесценции, безызлучательные процессы, квантовая точка, сульфид свинца.

DOI: 10.61011/OS.2024.06.58646.6194-24

Введение

Создание ИК люминесцентных сенсорных материалов актуально для новых технологий и устройств фотоники, включая химические, биомедицинские, информационные и телекоммуникационные технологии, оптоэлектронику, фотокатализ и т.д. [1-6]. Для большинства перечисленных приложений большой интерес представляют полупроводниковые коллоидные квантовые точки (КТ) халькогенидов металлов, обладающие размернозависимыми люминесцентными свойствами от УФ до ИК области [1-6]. Серьезным ограничителем для использования на практике является низкий квантовый выход люминесценции коллоидных КТ, особенно в случае гидрофильных коллоидных растворов [7-10]. К настоящему времени установлено, что люминесцентные свойства коллоидных КТ определяются не только электронной структурой полупроводника и характерным для него квантово-размерным эффектом, но и поверхностным окружением (пассивирующие лиганды, растворители, полимерные матрицы и др.), а также условиями синтеза (концентрации прекурсоров, температура, уровень рН и др.) [7-10]. Методики коллоидного синтеза предполагают пассивацию (стабилизацию) поверхности

КТ органическими лигандами, которые обеспечивают их растворимость и предотвращают агрегацию. Низкие значения квантового выхода люминесценции КТ часто связывают с поверхностными дефектами нанокристалла, являющихся каналами безызлучательной рекомбинации. Наличие поверхностных дефектов связано с оборванными связями на поверхности КТ, обусловлено химическими свойствами пассивирующего лиганда и механизмом его взаимодействия с КТ, а также наличием восстановленных или "недозаряженных" атомов металла на поверхности КТ [11–18].

Еще одним типом безызлучательных процессов в коллоидных КТ предполагается безызлучательный перенос энергии (FRET) от электронно-возбужденных состояний КТ к функциональным группам молекул поверхностного окружения (пассирующий лиганд, растворитель и др.), колебания которых обладают существенным ангармонизмом [19–27]. Влияние функциональных групп молекул растворителя установлено для КТ HgTe, CdTe, InAs/CdSe/ZnSe [19,23–27]. Авторами работ [19,23–27] показано, что замена водородсодержащих растворителей (вода, толуол и др.) на растворители, не содержащие легких атомов (дейтерированная вода, трифтортрихлорэтан, тетрахлорметан и др.), приводит к увеличению кванто-

вого выхода и времени затухания ИК люминесценции КТ. Это обусловлено длинноволновым смещением полос поглощения обертонов и основных тонов колебаний функциональных групп молекул растворителей, не содержащих легких атомов, и уменьшением степени перекрытия резонансов излучателя и тушителя. Подобные исследования малочисленны, поскольку замена растворителя часто осуществляется одновременно с заменой пассивирующего лиганда. При этом изменяется состояние поверхности КТ: размер КТ, концентрация центров безызлучательной и излучательной рекомбинации и т.д. [7,8,11-13,15-17,28]. Существенно меньшее влияние на электронную структуру КТ оказывает дейтерирование водного раствора (D_2O) , при котором поглощение обертонов ангармонических колебаний гидроксильных групп удается смещать в длинноволновую область от 900 к 1200 nm [24,29].

Для КТ халькогенидов свинца (PbS и PbSe) подобные исследования не выполнялись, несмотря на обнаруженную тенденцию уменьшения квантового выхода их люминесценции с 60 до 3% в области 0.9-2 µm с увеличением размера КТ с 3 до 10 nm [25,30-32]. В этой области спектр люминесценции КТ PbS и КТ PbSe имеет значительное перекрытие со спектром поглощения обертонов ангармонических ОН- и СН-колебаний растворителей. Данную экспериментальную закономерность авторы работы [25] преимущественно объясняют в рамках FRET от КТ к функциональным группам молекул гидрофобного лиганда и растворителя, имеющих полосы поглощения обертонов С-Н-колебаний, обладающих заметным ангармонизмом в области 1-2 µm. Однако прямые доказательства уменьшения квантового выхода люминесценции за счёт безызлучательного переноса энергии от КТ к ангармоническим колебаниям молекул пассиватора и растворителя пока отсутствуют.

Для КТ PbS в области $0.8-2.0\,\mu$ m отдельно представлены результаты исследований кинетики люминесценции КТ [33–36]. Показано уменьшение времени затухания люминесценции с 2.7 до $0.25\,\mu$ m с увеличением размера КТ с 2.5 до 9.0 nm [33–36]. На основании данных о стоксовом сдвиге и температурной зависимости люминесцентных свойств КТ PbS наблюдаемую размерную зависимость объясняют существованием квазилокального состояния, влияние которого возникает за счет квантоворазмерного ограничения только для КТ определенного размера [14,33–36]. При этом имеются теоретические и экспериментальные данные, которые не укладываются в рамки данной модели [10,37–39].

Таким образом, имеющиеся объяснения размерной зависимости спектрально-люминесцентных свойств, стоксова сдвига, механизма свечения КТ PbS остаются пока неоднозначными [33–39]. Кроме того, влияние растворителя на квантовый выход ИК люминесценции КТ PbS до сих пор подробно не рассмотрено. Однако в ближнем ИК диапазоне, где КТ PbS являются перспективными материалами для технологий люминесцентного маркирования, биосенсорики, оптоэлектронных устройств и др., учет влияния растворителя на люминесцентные свойства КТ необходим для достижения приоритетных позиций в данной области науки и техники.

Настоящая работа посвящена установлению влияния обертонов ангармонических колебаний ОН-групп молекул растворителя на величину квантового выхода ИК люминесценции КТ PbS при замене растворителя с H_2O на D_2O .

Материалы и методы исследования

Материалы и методика синтеза КТ PbS

Нитрат свинца (Pb(NO₃)₂), сульфид натрия (Na₂S), 2меркаптопропионовая кислота (2-MPA), гидроксид натрия (NaOH), дейтерированная вода (D₂O), диметилсульфоксид (DMSO), краситель индоцианин зелёный (ICG) — все используемые в работе химические реагенты соответствуют степени чистоты ОСЧ.

Коллоидные КТ PbS синтезировали методом водного синтеза с использованием в качестве пассивирующего лиганда молекул 2-MPA (далее КТ PbS/2-MPA). Данная методика синтеза заключалась в смешивании водных растворов 2-MPA (1 mM) и Pb(NO₃)₂ (0.5 mM) при pH 10 с последующим внесением в реакционную смесь водного раствора Na₂S (0.1 mM). Значение pH коллоидного раствора контролировали путем покапельного внесения 1 M раствора NaOH. Для исключения окисления KT PbS/2-MPA на этапе синтеза осуществляли продувку азотом [10,37].

Замену растворителя осуществляли путем осаждения водного раствора КТ PbS/2-MPA посредством центрифугирования и последующего растворения осадка в D₂O с сохранением исходного объема коллоидного раствора и концентрации КТ.

Оборудование и методы исследования

Структурные исследования КТ осуществляли методами просвечивающей электронной микроскопии (ПЭМ) с помощью микроскопа Libra 120 (CarlZeiss, Германия) с цифровым анализом ПЭМ-изображений и рентгеновской дифракции. По микрофотографиям ПЭМ устанавливали дисперсию КТ в образце по размерам.

Спектры оптического поглощения регистрировали с помощью спектрометра USB2000+ (Ocean optics, CIIIA) (в области 200–900 nm) и спектрометра NIR-Quest (Ocean optics, CIIIA) (в области 900–2100 nm), источником излучения служил USB-DT (Ocean optics, CIIIA).

Спектры люминесценции в ближней ИК области регистрировали с помощью фотоприемника PDF 10C/M (ThorlabsInc., США) со встроенным усилителем и дифракционного монохроматора с решёткой 600 mm⁻¹. В качестве источника возбуждения спектров люминесценции использовали полупроводниковый лазерный диод LPC-826 (Mitsubishi, Япония) с излучением на длине волны 650 nm и оптической мощностью 200 mW.

Рис. 1. ПЭМ-изображения КТ PbS/2-MPA в H₂O (a) и в D₂O (b). Рентгеновская дифракция КТ PbS в H₂O (c).

Квантовый выход люминесценции определяли относительным методом:

$$QY = QY_r \frac{I}{I_r} \frac{D_r}{D} \frac{n^2}{n_r^2},\tag{1}$$

где QY_r — квантовый выход люминесценции эталона, I и I_r — интегральная интенсивность в полосе люминесценции КТ и эталона, D и D_r — оптические плотности на длине волны возбуждения для КТ PbS/2-MPA и эталона (в экспериментах D и $D_r \sim 0.1$), n и n_r — коэффициент преломления раствора КТ PbS/2-MPA и эталона соответственно.

В качестве растворителя КТ PbS/2-MPA использовали H_2O (n = 1.3314 на длине волны 650 nm при температуре 293 К [40]) и D_2O (n = 1.3264 на длине волны 650 nm при температуре 293 К [40]). В качестве эталона квантового выхода люминесценции КТ PbS/2-MPA в ближней ИК области использован раствор красителя ICG в DMSO с $QY_r = 12\%$ в области 800 nm [41] ($n_r = 1.4770$ на длине волны 650 nm при температуре 293 К согласно данным работы [42]).

Затухание люминесценции исследовали с помощью платы время-коррелированного однофотонного счёта ТітеНагр 260 (РісоQuant, Германия) с однофотонным лавинным диодным модулем InGaAs KIT-IF-25C (Місго Photon Devices, Италия) с временным разрешением 0.5 ns в спектральной области от 900 до 1400 nm. Образцы КТ возбуждали импульсным полупроводниковым лазером PICOPOWERLD660 (Alphalas, Германия) с длиной волны 660 nm, длительностью импульса 50 ps и частотой повторения импульсов 30 kHz.

Результаты и обсуждение

Структурные характеристики КТ PbS

На рис. 1 представлены ПЭМ-изображения и гистограммы распределения по размеру КТ PbS/2-MPA в различных растворителях (H₂O и D₂O). Цифровой анализ ПЭМ-изображений образца КТ PbS/2-MPA в H₂O позволил установить формирование отдельных сферических наночастиц со средним размером порядка 3 nm с дисперсией, не превышающей 20% (рис. 1, a). Замена растворителя с H₂O на D₂O не приводит к заметному изменению размера КТ PbS/2-MPA. Согласно данным ПЭМ-изображений, средний размер КТ PbS/2-MPA в D₂O составил 3 nm с дисперсией, не превышающей 20% (рис. 1, b).

Рентгенограммы КТ PbS/2-MPA в H₂O и D₂O оказались идентичными. Для излучения $K_{\alpha Cu}$ с длиной 1.056 Å присутствуют хорошо различимые рефлексы при 25.9°, 30.1°, 43.05°, соответствующие модификации кристаллов PbS, сформированных в кубической решетке ($Fm\bar{3}m$) (рис. 1, c) [38]. Все рефлексы оказались заметно уширенными вследствие размерного эффекта. Проведенные оценки размера кристаллитов с помощью формулы Дебая-Шерера [43,44]

$$d = \frac{0.9\lambda}{\beta\cos\theta},\tag{2}$$

где d — размер в nm, λ — длина волны рентгеновского излучения, β — ширина пика дифракции на половине высоты (использовали пик (220), поскольку он не перекрывается с другими рефлексами), θ — угол Брэгга, показали величину порядка 3.2 nm, что хорошо соотносится с данными ПЭМ.

Таким образом, образцы КТ PbS/2-MPA в H_2O и D_2O представляют собой набор нанокристаллов PbS средним размером около 3 nm.

Спектрально-люминесцентные свойства КТ PbS

На рис. 2 приведены спектры оптического поглощения и люминесценции КТ PbS/2-MPA в разных растворителях (H₂O и D₂O).

В спектре оптического поглощения в области 800 nm наблюдается особенность, которая обусловлена наиболее вероятным экситонным переходом в оптическом поглощении КТ PbS/2-MPA (рис. 2, кривая 1). Положение данной особенности значительно смещено в сторону

Рис. 2. Спектры оптического поглощения (кривые 1, 2) и люминесценции (3, 4) КТ PbS/2-MPA в H₂O (1, 3) и D₂O (2, 4). Спектры поглощения обертонов колебаний молекул растворителей H₂O (5) и D₂O (6).

меньших длин волн относительно края поглощения массивного PbS/2-MPA (3025 nm (0.41 eV)) [45], что является проявлением квантово-размерного эффекта. Замена растворителя с H₂O на D₂O не оказывает заметного влияния на спектр оптического поглощения KT PbS (рис. 2, кривые 1, 2). Вычисление среднего размера KT PbS/2-MPA по эмпирической формуле [46]

$$E = 0.41 + \frac{1}{0.0252d^2 + 0.283d},\tag{3}$$

где d — диаметр КТ PbS/2-MPA в nm, E — энергия пика экситонного поглощения, дала величину 2.7 nm, что находится в хорошем согласии с данными ПЭМ и рентгеновской дифракции.

В спектре люминесценции исходного образца КТ PbS/2-MPA обнаружена одна полоса с максимумом при 950 nm и полушириной 220 nm (рис. 2, кривая 3). Величина стоксова сдвига составила 0.24 eV, что на основании данных работ [37,47] позволяет отнести этот пик к экситонной люминесценции. Замена растворителя с H₂O на D₂O приводит к увеличению интенсивности этого свечения в 2.5 раза без заметной трансформации спектрального контура полосы люминесценции КТ PbS/2-MPA (рис. 2, кривая 4). При этом квантовый выход люминесценции КТ PbS/2-MPA увеличивается с 2 до 5% (рис. 2, кривые 3, 4). Отсутствие спектральных деформаций (стоксов сдвиг, трансформация спектрального контура и т.д.) позволяет заключить, что состояние поверхности КТ остается неизменным при замене H₂O на D₂O.

Таким образом, исследование люминесцентных свойств КТ PbS/2-MPA в разных растворителях позволит установить роль ангармонизма колебаний ОН-групп на величину квантового выхода ИК люминесценции КТ PbS/2-MPA в условиях одного размера и неизменного состояния поверхности КТ.

На рис. 2 (кривые 5, 6) приведены спектры поглощения H_2O и D_2O в области 800-1500 nm, соответствующей спектральному положению обертонов

Данные аппроксимации кривых затухания люминесценции КТ PbS/2-MPA

Образец	$\tau_1, \mu m$	a_1	$\tau_2, \mu m$	<i>a</i> ₂	$\tau_3, \mu m$	<i>a</i> 3	$<\tau>, \mu { m m}$
$PbS \ (H_2O)$	4.50	0.51	0.40	0.29	0.05	0.21	2.40
$PbS \ (D_2O)$	7.20	0.83	0.25	0.17	-	—	6.00

колебаний ОН- и ОД-групп. Видно, что при изотопном на D поглощение уменьшается замещении Н практически до нуля в области 800-1200 nm. Это обусловлено значительным смещением частоты основных тонов (и соответственно обертонов) валентных И деформационных колебаний OHгрупп в низкочастотную область при изотопном замещении атома водорода (для ОН-групп $v_s^{OH} = 3261 \text{ cm}^{-1}, v_{as}^{OH} = 3351 \text{ cm}^{-1}, \delta^{OH} = 1639 \text{ cm}^{-1};$ OD-rpynn — $v_s^{OD} = 2407 \text{ cm}^{-1}, v_{as}^{OD} = 2476 \text{ cm}^{-1},$ $\delta^{\text{OD}} = 1206 \, \text{cm}^{-1})$ [24–27].

Таким образом, изотопное замещение в растворителе Н на D приводит к значительной расстройке спектрального резонанса поглощения обертонов колебаний молекул растворителя и люминесценции КТ PbS/2-MPA (950 nm).

Представленные на рис. 3, a кривые затухания люминесценции КТ PbS/2-MPA в H₂O и D₂O демонстрируют неэкспоненциальный характер, который может быть обусловлен дисперсией КТ по размерам, а также наличием тушителей [37,48].

В роли тушителей люминесценции могут выступать собственные дефекты кристаллической решетки КТ. Они повышают вероятность локализации экситона, захватывают носители заряда и могут выступать в роли центров безызлучательной рекомбинации. Кроме того, неэкспоненциальность кривых затухания люминесценции КТ также возможна за счет взаимодействия электронной подсистемы КТ с обертонами ангармонических колебаний ОН-групп растворителя [49,50]. Для установления среднего времени затухания люминесценции экспериментальные кривые аппроксимировали суммой нескольких экспонент:

$$I(t) = \sum_{i=1}^{3} a_i \exp[-t/\tau_i],$$
 (4)

где a_i и τ_i — амплитуда и постоянная времени *i*-й компоненты (таблица).

Анализ кривых затухания люминесценции КТ PbS/2-MPA показал увеличение среднего времени затухания с 2.4 до 6.0 µs при дейтерировании растворителя (таблица).

Данные о среднем времени затухания и интенсивности люминесценции позволяют оценить эффективность безызлучательного переноса электронного возбуждения:

$$\varphi_1 = 1 - \frac{I_{\frac{\text{PbS}}{\text{H}_2\text{O}}}}{I_{\frac{\text{PbS}}{\text{D}_2\text{O}}}} = 0.6,$$
(5)

Рис. 3. (*a*) Экспериментальные кривые кинетики затухания люминесценции КТ PbS/2-MPA в H_2O и D_2O (штрихом указаны кривые аппроксимации суммой нескольких экспонент (4)). (*b*) Аппроксимация кривой затухания КТ PbS/2-MPA в H_2O функциями R. Kohlrausch (9) и M. Tachiya (10).

$$\varphi_2 = 1 - \frac{\tau_{\frac{\text{PbS}}{\text{H}_2\text{O}}}}{\tau_{\frac{\text{PbS}}{\text{D}_2\text{O}}}} = 0.6.$$
(6)

Совпадение этих величин указывает на то, что наблюдается динамическое тушение люминесценции.

Вычисление констант излучательной (k_r) и безызлучательной (k_{nr}) рекомбинации в рамках простейшей двухуровневой модели:

$$k_r = \frac{QY}{\langle \tau \rangle},\tag{7}$$

$$k_{nr} = k_r \left(\frac{1 - QY}{QY}\right) \tag{8}$$

показало, что дейтерирование растворителя не приводит к заметному изменению константы излучательной рекомбинации $(k_r^{H_2O} = 8.3 \cdot 10^3 s^{-1}$ и $k_r^{D_2O} = 8.2 \cdot 10^3 s^{-1}).$ При этом константа безызлучательной рекомбинации уменьшается в 2.5 раза (с $k_{nr}^{\text{H}_2\text{O}} = 4 \cdot 10^5 s^{-1}$ до $k_{nr}^{D_2O} = 1.6 \cdot 10^5 s^{-1}$). Обнаруженное уменьшение интенсивности и времени затухания люминесценции в H₂O по сравнению с D₂O и рост константы безызлучательной рекомбинации являются признаками безызлучательного переноса энергии электронного возбуждения от КТ PbS/2-MPA к ОН-группам растворителя H₂O. Отсутствие изменений константы излучательной рекомбинации на фоне увеличения квантового выхода люминесценции КТ PbS/2-MPA при замене H2O на D2O подтверждает сделанное ранее заключение о неизменности структуры КТ.

Использование для описания закона затухания люминесценции КТ PbS/2-MPA суммы нескольких экспонент не раскрывает механизма переноса энергии [50]. Дополнительную информацию о механизме безызлучательного переноса энергии от КТ PbS/2-MPA к OHгруппам получали путем аппроксимации кинетики затухания люминесценции дробно-экспоненциальной функцией R. Kohlrausch [49,50]:

$$I_D(t) = I_D(0) \exp\left[-\frac{t}{\tau_D} - 2b\left(\frac{t}{\tau_D}\right)^{\beta}\right],\tag{9}$$

где I_D и τ_D — интенсивность и время затухания люминесценции донора; b — константа, зависящая от расстояния между донором и акцептором, β — некоторый параметр, значение которого указывает на механизм переноса энергии электронного возбуждения [49].

При диполь-дипольном механизме FRET величина параметра $\beta = 0.5$. В свою очередь, такая ситуация соответствует случайному распределению по расстояниям доноров (КТ) и акцепторов (молекул H₂O) в объеме трехмерной среды [49]. Результаты аппроксимации кривой затухания люминесценции КТ PbS/2-MPA в H₂O функцией (9) представлены на рис. 3, *b*. Видно, что функция (9) имеет заметные отклонения от экспериментальной кривой затухания КТ PbS в H₂O.

Действительно, молекулы воды при растворении в ней КТ PbS/2-MPA оказываются адсорбированы на поверхности последних. В таком случае необходимо использовать для аппроксимации кривых затухания люминесценции функцию из работ [50,51]. В ней учитывается, что количество тушителей на каждый донор энергии распределено по закону Пуассона. При этом скорость тушения (скорость переноса энергии) на каждый тушитель постоянна и определяется только числом тушителей. В таком случае кривые затухания люминесценции необходимо описывать функцией М. Tachiya [50,51]:

$$I_D(t) = I_D(0) \exp\left[-\frac{t}{\tau_D} - \langle n_1 \rangle (1 - \exp[k_1 t]) - \langle n_2 \rangle (1 - \exp[k_2 t])\right],$$
(10)

где < $n_{1,2}$ > — среднее число двух типов тушителей, приходящихся на одну КТ; $k_{1,2}$ — константы скорости

переноса энергии от КТ к молекулам растворителя. Высокой достоверности аппроксимации удалось достичь в случае учета двух типов тушителей, например ОНгрупп молекул воды, находящихся во внутренней и внешней координационной сферах КТ. Описание экспериментальных кривых затухания люминесценции КТ PbS/2-MPA в H_2O выражением (10) наиболее точно описывает экспериментальные данные (рис. 3, *b*).

Несмотря на то, что имеются эмпирические факты, указывающие на безызлучательный перенос энергии от КТ PbS к ангармоническим колебаниям молекул H₂O, диполь-дипольный механизм переноса энергии остаётся предположительным. Оценим в предположении дипольдипольного механизма переноса энергии радиус Ферстера [52]:

$$R_{0} = \left[8.875 \cdot 10^{-25} \chi^{2} n^{-4} Q Y^{\text{PbS}} \frac{\int I^{\text{PbS}}_{\text{JIIOM}}(\lambda) \varepsilon(\lambda) \lambda^{4} d\lambda}{\int I^{\text{PbS}}_{\text{JIIOM}}(\lambda) d\lambda} \right]^{\frac{1}{6}},$$
(11)

где n = 1.33 — показатель преломления воды, χ^2 — пространственный фактор, равный 0.475, QY^{PbS} — квантовый выход люминесценции КТ PbS/2-MPA в D₂O, $I_{\text{ЛЮМ}}^{\text{PbS}}(\lambda)$ — спектр излучения КТ PbS/2-MPA — донора энергии, $\varepsilon(\lambda)$ [1·M·cm⁻¹] — молярный коэффициент экстинкции акцептора энергии H₂O. Радиус Ферстера оказался равным $R_0 = 0.4$ nm, что указывает на адсорбцию молекул воды на поверхности КТ PbS/2-MPA.

Выражение для эффективности переноса энергии позволяет, используя значения радиуса Ферстера, вычистить среднее расстояние между донором и акцептором *r*:

$$\varphi = \frac{R_0^6}{R_0^6 + r^6}.$$
 (12)

Оказалось, что r для KT PbS в H₂O равно 0.37 nm. Получившееся расстояние r действительно соответствует среднему расстоянию от KT до молекулы воды с учетом размера молекул пассивирующего лиганда (~ 0.4 - 0.5 nm).

Таким образом, полученные экспериментальные закономерности доказывают безызлучательный дипольдипольный перенос энергии электронного возбуждения от КТ PbS/2-MPA к ангармоническим колебаниям молекул растворителя (H₂O).

Заключение

В работе представлены эмпирические закономерности, демонстрирующие влияние ангармонических колебаний ОН-групп молекул растворителя на величину квантового выхода люминесценции в ближней ИК области коллоидных КТ PbS/2-MPA. Дейтерирование растворителя приводит к значительной отстройке полосы поглощения обертонов ОD-колебаний (1315 nm) от полосы люминесценции КТ PbS/2-MPA (950 nm), не оказывая существенного влияния на состояние поверхности КТ. При этом наблюдается рост квантового выхода люминесценции КТ PbS/2-MPA с 2 до 5% с одновременным увеличением времени ее затухания с 2.4 до $6.0\,\mu$ s и уменьшением константы безызлучательной рекомбинации в 2.5 раза.

Из анализа аппроксимаций кривых затухания люминесценции КТ PbS/2-MPA установлено, что наибольшее согласие с экспериментальными данными наблюдается при учете в законе затухания люминесценции статистического распределения по числу ОН-групп молекул растворителя относительно КТ. Численные расчеты интеграла перекрытия спектра люминесценции донора (КТ PbS/2-MPA) со спектром экстинкции акцептора (обертоны ОН-колебаний) дали значение радиуса Фёрстера $R_0 = 0.4$ nm, что соответствует адсорбции молекул растворителя на поверхности КТ при их растворении в нем. При этом среднее расстояние между донором и акцептором в рамках теории FRET показало хорошее соответствие со значением среднего расстояния от КТ до молекулы воды, обусловленного размером молекул пассивирующего лиганда 2-МРА и концентрацией тушителей (молекул H_2O) в растворе ($\sim 0.4 - 0.5 \text{ nm}$).

Таким образом, полученные данные указывают в пользу реализации диполь-дипольного механизма безызлучательного переноса энергии электронного возбуждения от КТ PbS/2-MPA к обертонам ОН-колебаний растворителя, распложенных в окружающем объеме КТ. Обнаруженные экспериментальные закономерности имеют практическую ценность, поскольку учет влияния растворителя на квантовый выход ИК люминесценции КТ важен при создании эффективных систем люминесцентного маркирования, биосенсорики, оптоэлектронных устройств и др.

Благодарности

Результаты просвечивающей электронной микроскопии на микроскопе Libra 120 были получены на оборудовании Центра Коллективного Пользования ФГБОУ ВО "Воронежский государственный университет".

Финансирование работы

Исследование выполнено при финансовой поддержке Российского научного фонда в рамках научного проекта № 22-72-00098.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Yu Ma, Yu Zhang, W.W. Yu. J. Mater. Chem. C, 7, 13662 (2019). DOI: 10.1039/C9TC04065J
- H.M. Gil, T.W. Price, K. Chelani, J.-S.G. Bouillard, S.D.J. Calaminus, G.J. Stasiuk. iScience, 24 (3), 102189 (2021). DOI: 10.1016/j.isci.2021.102189

- M. Han, O. Karatum, S. Nizamoglu. ACS Appl. Mater. Interfaces, 14, 18, 20468 (2022).
 DOI: 10.1021/acsami.1c25009
- [4] L. Seravalli. Microelectronic Engineering, 276, 111996
 (2023). DOI: 10.1016/j.mee.2023.111996
- [5] C.L. Phillips, A.J. Brash, M. Godsland, N.J. Martin, A. Foster, A. Tomlinson, R. Dost, N. Babazadeh, E.M. Sala, L. Wilson, J. Heffernan, M/S. Skolnick, A.M. Fox. Sci Rep., 14, 4450 (2024). DOI: 10.1038/s41598-024-55024-6
- [6] A.A.H. Abdellatif, M.A. Younis, M. Alsharidah, O. Al Rugaie, H.M. Tawfeek. Challenges and Clinical Potential. Int. J. Nanomedicine, 17, 1951 (2022).
 DOI: 10.2147/IJN.S357980
- [7] D. Pluta, H. Kuper, R.T. Graf, Ch. Wesemann, P. Rusch. Nanoscale Adv., 5, 5005 (2023). DOI: 10.1039/D3NA00404JJ
 [Zhou, F. Ma, K. Chen, W. Zhao, R. Yang, Ch. Qiao, H. Shen, W.-Sh. Su, M. Lu, Yu. Zheng, R. Zhang, L. Chena, S. Wang. Nanoscale Adv., 5, 3896 (2023) DOI: 10.1039/D3NA00251A].
- [8] A. Olejniczak, R. Rich, Z. Gryczynski, B. Cichy. Nanoscale Horiz., 7, 63 (2022) DOI:10.39/D1NH00424G
- [9] I.G. Grevtseva, K.S. Chirkov, O.V. Ovchinnikov, M.S. Smirnov. Inorganic Materials, 59 (10), 1045 (2023).
 DOI: 10.1134/S0020168523100047
- I.G. Grevtseva, O.V. Ovchinnikov, M. S.Smirnov, T.S. Kondratenko, V.N. Derepko, A.M.H. Hussein, N.E. Egorov, E.A. Vozgorkova. Opt. Spectrosc., 130 (12), 1910 (2022). DOI: 10.21883/OS.2022.12.54100.4106-22
- [11] M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, A.I. Zvyagin,
 A.S. Perepelitsa, R.A. Ganeev. Opt. Spectrosc., 124 (5), 681 (2018). DOI: 10.1134/S0030400X18050211
- [12] V.A. Krivenkov, P.S. Samokhvalov, P.A. Linkov, D.O. Solovyeva, G.E. Kotkovskii et al. SPIE, **9126**, 91263 (2014). DOI: 10.1117/12.2057828
- J.E. Lewis, X.J. Jiang. Nanotechnology, 21, 455402 (2010).
 DOI: 10.1088/0957-4484/21/45/455402
- [14] I. Fosse, S. Lal, A.N. Hossaini, I. Infante, A.J. Houtepen.
 J. Phys. Chem. C, **125**, 23968 (2021).
 DOI: 10.1021/acs.jpcc.1c07464
- [15] S. Aynehband, M. Mohammadi, K. Thorwarth, R. Hany, F.A. Nuesch, M.D. Rossell, R. Pauer, J.-M. Nunzi, A. Simchi. ACS Omega, 5 (25), 15746 (2020). DOI: 10.1021/acsomega.0c02319
- [16] P. Papagiorgis, D. Tsokkou, K. Gahlot, L. Protesescu, A. Manoli, F. Hermerschmidt, C. Christodoulou, S.A. Choulis, M.V. Kovalenko, A. Othonos, G. Itskosl. J. Phys. Chem. C, 124 (50), 27848 (2020). DOI: 10.1021/acs.jpcc.0c09790
- [17] M. Debayle, T. Marchandier, X. Xu, N. Lequeux, T. Pons. ACS Appl. Materials & Interfaces, 11 (28), 25008 (2019). DOI: 10.1021/acsami.9b06194
- [18] V.L. Ermolaev. Opt. Spectrosc., 125 (2), 256 (2018).
 DOI: 10.21883/OS.2018.08.46368.97-18
- [19] E.B. Sveshnikova, V.L. Ermolaev. Opt. Spectrosc., 111 (1), 34 (2011). https://elibrary.ru/download/elibrary_16525621_62511575.pdf
- [20] V.L. Ermolaev, E.B. Sveshnikova, E.N. Bodunov. Physics-Uspekhi, **39** (3), 261 (1996).
 DOI: 10.3367/UFNr.0166.199603c.0279
- [21] V.L. Ermolaev, E.B. Sveshnikova, T.A. Shakhverdov. Rus. Chem. Rev., 44 (1), 48 (1975). https://www.uspkhim.ru/RCR2142pdf

- [22] A. Aharoni, D. Oron, U. Banin, E. Rabani, J. Jortner. Phys. Rev. Lett., **100**, 057404 (2008).
 DOI: 10.1103/PhysRevLett.100.057404
- [23] Q. Wen, St.V. Kershaw, S. Kalytchuk, O. Zhovtiuk, C. Reckmeier. ACS Nano, 10 (4), 4301 (2016).
 DOI: 10.1021/acsnano.5b07852
- [24] O.E. Semonin, J.C. Johnson, J.M. Luther, A.G. Midgett, A.J. Nozik, M.C. Beard. J. Phys. Chem. Lett., 1, 2445 (2010). DOI: 10.1021/jz100830r
- [25] S.E. Lappi, B. Smith, S. Franzen. Spectrochim. Acta, Part A, 60, 2611 (2004). DOI: 10.1016/j.saa.2003.12.042
- [26] S. Klingler, J. Hniopek, R. Stach, M. Schmitt. J. Popp. ACS Meas. Sci. Au, 2 (2), 157 (2022).
 DOI: 10.1021/acsmeasuresciau.1c00048
- [27] B. Xue, J. Cao, D. Deng, J. Xia, J. Jin, Zh. Qian, Yu. Gu. J. Mater. Sci. Mater. Med., 23, 723 (2012).
 DOI: 10.1007/s10856-012-4548-z
- [28] S.I. Sadovnikov, A.I. Gusev. RSC Adv., 10, 40171 (2020). DOI: 10.1039/D0RA07853K
- [29] H. Du, C. Chen, R. Krishnan, T.D. Krauss, J.M. Harbold, F.W. Wise, M.G. Thomas, J. Silcox. Nano Lett., 2 (11), 1321 (2002). DOI: 10.1021/nl025785g
- [30] H. Liu, P. Guyot-Sionnest. J. Phys. Chem. C, 14 (35), 14860 (2010). DOI: 10.1021/jp105818e
- [31] B.L. Wehrenberg, C. Wang, P. Guyet-Sionnest. J. Phys. Chem.
 B, 106, 10634 (2002). DOI: 10.1063/1.4917388
- [32] P.S. Parfenov, A.P. Litvin, A.V. Baranov, E.V. Ushakova, A.V. Fedorov, A.V. Prudnikovb, M.V. Artemyev. Opt. Spectrosc., **112**, 868 (2012). DOI: 10.1134/S0030400X12060136
- [33] A.P. Litvin, P.S. Parfenov, E.V. Ushakova, A.L. Simoes Gamboa, A.V. Fedorov et al. J. Phys. Chem. C, 118 (35), 20721 (2014). DOI: 10.1021/jp507181k
- [34] C. Cheng, J. Li, X. Chengb. J. Lumin., 188, 252 (2017). DOI: 10.1016/j.jlumin.2017.04.037
- [35] E.V. Ushakova, A.P. Litvin, P.S. Parfenov, A.V. Fedorov, M. Artemyev, A.V. Prudnikau, I.D. Rukhlenko, A.V. Baranov. ACS Nano, 6 (10), 8913 (2012). DOI: 10.1021/nn3029106
- [36] I. Grevtseva, T. Chevychelova, O. Ovchinnikov, M. Smirnov, T. Kondratenko, V. Khokhlov, A.I. Zvyagin, M. Astashkina, K. Chirkov. Optical and Quantum Electronics, 55 (5) (2023). DOI: 10.1007/s11082-023-04658-3
- [37] M.S. Gaponenko, A.A. Lutich, N.A. Tolstik, A.A. Onushchenko, A.M. Malyarevich, E.P. Petrov, K.V. Yumashev. Phys. Rev. B, 82, 125320 (2010). DOI: 10.1103/PhysRevB.82.125320
- [38] Dae Gwi Kim, T. Kuwabara, M. Nakayama. J. Lumin., 119–120, 214 (2006). DOI: 10.1016/j.jlumin.2005.12.033
- [39] S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen. Opt. Mater. Express, 2, 1588 (2012). DOI: 10.1364/OME.2.001588
- [40] F.W.B. van Leeuwen, B. Cornelissen, F. Caobelli, L. Evangelista, L. Rbah-Vidal, S. Del Vecchio, C. Xavier, J. Barbet, M. de Jong. EJNMMI Radiopharm. Chem., 2, 15 (2017). DOI: 10.1186/s41181-017-0034-8
- [41] O. Ciocirlan, O. Iulian. J. Serb. Chem. Soc., 74 (3), 317 (2009). DOI: 10.2298/JSC0903317C
- [42] L.V. Vu, S.C. Doanh, L.T. Nga, N.N. Long. e-J. Surf. Sci. Nanotech., 9, 494 (2011). DOI: 10.1380/ejssnt.2011.494
- [43] P. Scherrer. Nachr. Ges. Wiss. Gott., 26, 98 (1918).
- [44] W.W. Scanlon. J. Phys. Chem. Solids, 8, 423 (1959).
 DOI: 10.1016/0022-3697(59)90379-8

- [45] I. Moreels, K. Lambert, D. Smeets, D. Muynck, T. Nollet, J.C. Martins, F. Vanhaecke, A. Vantomme, Ch. Delerue, G. Allan, Z. Hens. ACS Nano, 3 (10), 3023 (2009). DOI: 10.1021/nn900863a
- [46] J.R. Caram, S.N. Bertram, H. Utzat, W.R. Hess, J.A. Carr, T.S. Bischof, A.P. Beyler, M.W.B. Wilson, M.G. Bawendi. Nano Lett., 16 (10), 6070 (2019). DOI:10.1021/acs.nanolett.6b02147
- [47] S. Sadhu, M. Tachiya, A. Patra. J. Phys. Chem. C, 114 (6), 2842 (2010). DOI: 10.1021/jp912268m
- [48] E.N. Bodunov, V.V. Danilov, A.S. Panfutova, A.L. Simoes Gamboa. Ann. Phys. (Berlin), **528** (3–4), 272 (2016).
 DOI: 10.1002/andp.201500350
- [49] M.S. Smirnov. Opt. Spectrosc., 123 (5), 705 (2017). DOI: 10.1134/S0030400X17090284
- [50] M. Tachiya. Chem. Phys. Lett., 33 (2), 289 (1975).
 DOI: 10.1016/0009-2614(75)80158-8
- [51] F.G. Sanchez, C.C. Ruiz. J. Lumin., 69, 179 (1996).DOI: 10.1016/S0022-2313(96)00116-0