08.1

Фемтосекундный лазерный микроинжиниринг серебросодержащих нанопористых кварцевых стекол

© Е.О. Епифанов¹, А.О. Рыбалтовский^{1,2}, В.И. Юсупов¹, С.А. Минаева¹, С.С. Федотов³, В.Н. Сигаев³, Н.В. Минаев¹

¹ Институт фотонных технологий, Курчатовский комплекс кристаллографии и фотоники, НИЦ "Курчатовский институт", Москва, Троицк, Россия

² Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына

Московского государственного университета им. М.В. Ломоносова, Москва, Россия ³ Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия

E-mail: minaevn@gmail.com

Поступило в Редакцию 6 марта 2024 г. В окончательной редакции 11 июня 2024 г. Принято к публикации 12 июня 2024 г.

Рассмотрены особенности формирования точечных микроструктур фемтосекундным лазерным излучением на поверхности и в приповерхностном слое нанопористых кварцевых стекол, импрегнированных молекулами прекурсора серебра, в условиях воздушной и водной среды. Продемонстрирована роль воды в изменении морфологии образующихся микроструктур на основе наночастиц серебра. В отличие от формируемых в воздушной среде кратерных структур в условиях водной среды в центре области лазерного воздействия возникают выпуклые конические микроструктуры высотой до 2 µm. Предложены качественные модели, объясняющие полученные эффекты.

Ключевые слова: нанопористые кварцевые стекла, фемтосекундное лазерное излучение, водная среда, наночастицы серебра, микроструктуры.

DOI: 10.61011/PJTF.2024.19.58655.19913

Для создания микроструктур (микроинжиниринга) нередко используются различные среды, в которые помещают обрабатываемый материал во время лазерного воздействия [1-5]. Водная среда обладает рядом привлекательных свойств, в частности имеет высокую прозрачность, фото- и химическую стойкость, а также высокие значения плотности и теплопроводности. Так, для создания с помощью лазерного излучения микроструктур в прозрачных диэлектриках в качестве среды зачастую используется водный раствор солей серебра [3,6,7]. При этом в области облучения на границе раздела сред (диэлектрик-вода) образуются наночастицы серебра (НЧ Ag), стимулируются термоплазмонные процессы и фотохимические реакции, приводящие к изменению и разрушению приповерхностных слоев обрабатываемого материала [8].

В настоящей работе впервые получены и описаны результаты использования водной среды для лазероиндуцированного формирования микроструктур в кварцевых нанопористых стеклах (НПС), имеющих в своих порах органические серебросодержащие молекулы. Целью исследования является демонстрация различий в физических процессах и морфологии микроструктур, формирующихся в воздушной и водной средах при фемтосекундном лазерном воздействии. Более подробное обсуждение самих механизмов формирования микроструктур различной морфологии в образцах НПС будет приведено нами в отдельной публикации с учетом развития термоплазмонных эффектов в жидкой среде.

Использовались отечественные кварцевые НПС РФ-РХТУ [9–11] с размерами сообщающихся пор от 4.5 до 10 nm, пористостью 20-25%, содержанием SiO₂ 98% и известные НПС типа "Vycor" производства фирмы Corning (США) [12,13] с размерами пор ~ 5 nm, пористостью 28%, содержанием SiO₂ 96.3%. Образцы в виде полированных пластинок размером $5 \times 10 \times 1 \text{ mm}$ импрегнировались молекулами металлоорганического соединения серебра Ag(hfac)COD-(1,5-cyclooctadiene) (1,1,1,5,5,5-hexafluoroacetylacetonate) silver(I) производства фирмы Aldrich (США) в виде порошка в среде чистого (99.9999%) сверхкритического CO₂. Для этого они помещались в реактор объемом 5 ml вместе с 6 mg порошка серебросодержащего прекурсора. Импрегнация проводилась по методике, описанной в [9], при 50°С, давлении 200 bar в течение 90 min.

Источником лазерного излучения являлся фемтосекундный лазер ТЕМА-100 (Авеста-Проект, Россия). Излучение второй гармоники с $\lambda = 525$ nm (частота импульсов f = 70 MHz, длительность импульса $\tau = 80$ fs, энергия импульса E = 0.95 nJ) заводилось в объектив 20X (ZEISS 422050-9903-000, ЕС ЕРІ PLAN 20x/0.4) с рабочим расстоянием 3.2 mm, расположенный над трехкоординатным столом.

При работе с водной средой образец находился в кювете с дистиллированной водой и размещался так, чтобы его верхняя поверхность находилась на уровне поверхности воды. Время для полной пропитки образцов НПС водой составляло не более 15 min.

Рис. 1. Оптические микрофотографии точечных микроструктур на поверхности образца РФ-РХТУ, полученных на воздухе (*a*) и воде (*b*). Подсветка сверху. Параметры излучения: P = 80 mW, t = 0.5 s, доза облучения $\sim 40 \text{ mJ}.$

Для визуального контроля за процессом формирования микроструктур использовалась цифровая камера (ToupTek XFCAM1080PHB, KHP) с длиннофокусным микрообъективом. Микроструктуры изучались с помощью 3D-микроскопа HRM-300 Series (Huvitz, Kopeя) с цифровой камерой U3CMOS05100KPA (ToupTek, Cингапур).

Эксперименты показали, что особенности образующихся на поверхности НПС микроструктур значительно зависят от используемой среды. На рис. 1 представлены фотографии микроструктур на поверхности НПС РФ-РХТУ после облучения в двух средах.

При воздействии на воздухе (рис. 1, a) на поверхности пластинки появляется точечная структура в виде диффузно окрашенного пятна светло-коричневого цвета с полосой поглощения с максимумом в районе 410 nm, что связано с образованием плазмонных НЧ Ag, аналогичных полученным ранее [9]. При использовании водной среды (рис. 1, b) на фоне диффузного пятна появляются кольцевые структуры более темного оттенка. При этом в более широкой области просматриваются слабовыраженные фракталоподобные структуры, радиально расходящиеся от края диффузного пятна.

В настоящий момент предлагаются следующие качественные модели механизмов образования пятен с кольцевыми, фрактальными и объемными структурами (рис. 1, b) на поверхности образцов НПС при облучении в водной среде. При фокусировке лазерного излучения внутри образца за счет фото- и термического разложения молекул прекурсора происходит образование плазмонных НЧ Ад. Сформированные НЧ Ад интенсивно поглощают лазерное излучение, что приводит к возникновению в области лазерного воздействия высоких температур. Из-за присутствия воды в нанопорах и конвекции Марангони [14,15] на поверхности образца (из-за градиента поверхностного натяжения) возникают потоки жидкости. Эти потоки будут поднимать жидкость вверх к поверхности НПС в области оптической оси и далее радиально разносить ее в стороны. Поскольку вязкость воды быстро уменьшается с температурой, такие потоки при вытеснении менее подвижной жидкости более подвижной в результате гидродинамической нестабильности приведут к образованию фракталоподобных структур [14]. Отметим, что кольцевые структуры (рис. 1, b) образуются, вероятно, по тому же механизму, что и известные "кольца Марангони", которые возникают при высыхании капли коллоида. Из-за течения Марангони частицы коллоида аккумулируются в виде колец между контактной линией и центром капли [14,15].

При формировании точечных микроструктур на поверхности НПС морфология этих структур в центральной части принципиально менялась при смене воздушной среды на водную. На воздухе в центре образуемой структуры возникало углубление (рис. 2, *b*), которое обычно формируется в результате лазерной абляции за счет удаления материала [16]. В то же время лазерное облучение в водной среде, наоборот, приводило к появлению в центре конусообразного выступа высотой $\sim 1.5 \,\mu$ m (рис. 2, *a*). Подобная трансформация морфологии при переходе от лазерного воздействия на воздухе к воздействию в водной среде наблюдалась для обоих типов НПС.

Обнаруженные эффекты трансформации морфологии структур на поверхности НПС можно объяснить исходя из модели, представленной на рис. 2, с. В воздушной атмосфере максимум температуры T_{max} на его вертикальном профиле из-за слабого оттока тепла в воздух устанавливается на границе НПС/воздух. В том случае, если $T_{\text{max}} > T_{th}$ — величины порогового уровня, будет происходить абляция материала с образованием кратера. При переходе к водной среде из-за большего охлаждения и значительного отвода тепла, связанного с испарением воды на верхней границе образца, максимум температуры сместится в глубь НПС. При T_{max} < T_{th} абляции происходить не будет. В то же время наличие воды в НПС приведет к появлению описанного выше потока коллоида, направленного в области оптической оси вверх. Эта струя будет поднимать к поверхности образца НЧ Ад и фрагменты молекул прекурсора, которые затем с потоками коллоида будут разноситься радиально. При воздействии лазерным пучком с гауссовым распределением интенсивности максимальная температура на поверхности будет в центре лазерного пятна. Здесь же будет наблюдаться максимальная скорость испарения воды. Поэтому в центре на поверхности выступающего в виде своеобразного фонтана [17] коллоида концентрация НЧ Ад может существенно возрасти, что и приведет в дальнейшем к постепенному формированию наблюдаемой конусообразной структуры (рис. 2, *a*).

Таким образом, в работе продемонстрирован новый подход к лазерному формированию микроструктур на поверхности НПС. Показано, что при фемтосекундном лазерном облучении таких материалов, импрегнированных молекулами металлоорганического соединения серебра, в водной среде образуются кольцевые и фрактальные структуры, а в центре может формироваться ко-

Рис. 2. Особенности морфологии микроструктур на поверхности НПС при точечном лазерном воздействии в водной и воздушных средах. *a*, *b* — оптические изображения микроструктур и их трехмерные топографические снимки. *c* — схема, иллюстрирующая процессы, приводящие к формированию конусообразного выступа в водной среде. Сверху — воздушная среда, снизу — пористое стекло, насыщенное водным раствором прекурсора серебра. Схематично показаны профиль поверхностной температуры T_{surf} (штриховая линия), профиль температуры вдоль оптической оси (сплошная линия, отмечен порог абляции T_{th}), потоки жидкости в НПС (светлые стрелки, звездочкой отмечено место с максимальной температурой). P = 80 mW, t = 5 s, доза облучения 40 mJ.

нусообразный выступ, в состав которого могут входить НЧ Аg.

Финансирование работы

Работа выполнена в рамках государственного задания НИЦ "Курчатовский институт" (в части проведения эксперимента, обработки и интерпретации результатов), а также частично поддержана финансированием по теме № 115041410201 "Формирование наноструктурных объектов и их исследование спектроскопическими методами" (в части спектральных исследований).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. Zhang, H. Wada, in *Handbook of laser micro- and nano-engineering*, ed by K. Sugioka (Springer, Cham, 2021), p. 1481–1515. DOI: 10.1007/978-3-030-63647-0_30
- [2] M.Yu. Tsvetkov, V.I. Yusupov, N.V. Minaev, A.A. Akovantseva, P.S. Timashev, K.M. Golant, B.N. Chichkov, V.N. Bagratashvili, Opt. Laser Technol., 88, 17 (2017). DOI: 10.1016/j.optlastec.2016.05.020
- [3] A.G. Shubny, E.O. Epifanov, N.V. Minaev, M.Yu. Tsvetkov,
 A.P. Sviridov, S.A. Minaeva, V.I. Yusupov, Laser Phys. Lett.,
 16, 086001 (2019). DOI: 10.1088/1612-202X/ab2642
- [4] Y. Liao, Y. Cheng, Micromachines, 5, 1106 (2014). DOI: 10.3390/mi5041106
- [5] K. Barhoum, A.S. Shishkina, R.A. Zakoldaev, O.V. Andreeva, Opt. Quantum Electron., 55, 324 (2023).
 DOI: 10.1007/s11082-023-04558-6

- [6] M.Yu. Tsvetkov, V.I. Yusupov, N.V. Minaev, P.S. Timashev, K.M. Golant, V.N. Bagratashvili, Laser Phys. Lett., 13, 106001 (2016). DOI: 10.1088/1612-2011/13/10/106001
- [7] K.K. Kwon, K.Y. Song, J.M. Seo, C.N. Chu, S.H. Ahn, J. Mater. Process. Technol., 291, 117046 (2021).
 DOI: 10.1016/j.jmatprotec.2021.117046
- [8] A.G. Shubny, E.O. Epifanov, N.V. Minaev, V.I. Yusupov, J. Laser Appl., 34, 032016 (2022). DOI: 10.2351/7.0000657
- [9] A.O. Rybaltovsky, E.O. Epifanov, V.N. Sigaev, S.S. Fedotov, V.I. Yusupov, N.V. Minaev, Photonics, 10, 1055 (2023). DOI: 10.3390/photonics10091055
- [10] S.S. Fedotov, A.G. Okhrimchuk, A.S. Lipatiev, A.A. Stepko, K.I. Piyanzina, G.Yu. Shakhgildyan, M.Yu. Presniakov, I.S. Glebov, S.V. Lotarev, V.N. Sigaev, Opt. Lett., 43, 851 (2018). DOI: 10.1364/ol.43.000851
- [11] A.S. Lipatiev, S.S. Fedotov, T.O. Lipateva, Yu.V. Mikhailov, S.I. Stopkin, S.V. Lotarev, P.I. Ivanov, V.N. Sigaev, Micropor. Mesopor. Mater., 369, 113036 (2024). DOI: 10.1016/j.micromeso.2024.113036
- [12] S.J. Schneider, *Engineered materials handbook: ceramics and glasses* (ASM International, 1987), vol. 4, p. 111–112.
- [13] J.F. Shackelford, R.H. Doremus, *Ceramic and glass materials: structure, properties and processing* (Springer, N.Y., 2008). DOI: 10.1007/978-0-387-73362-3
- [14] D. Eisenberg, W. Kauzmann, *The structure and properties of water* (OUP, Oxford, 2005).
- [15] L. Thayyil Raju, C. Diddens, Y. Li, A. Marin, M.N. van der Linden, X. Zhang, D. Lohse, Langmuir, **38**, 12082 (2022). DOI: 10.1021/acs.langmuir.2c01949
- [16] S. Stauss, K. Urabe, H. Muneoka, K. Terashima, in *Applications of laser ablation thin film deposition, nanomaterial synthesis and surface modification*, ed. by D. Yang (InTechOpen, 2016), ch. 10. DOI: 10.5772/65455
- [17] F. Lin, A.N. Quraishy, T. Tong, R. Li, G. Yang, M. Mohebinia, Y. Qiu, T. Vishal, J. Zhao, W. Zhang, Mater. Today Phys., 21, 100558 (2021). DOI: 10.1016/j.mtphys.2021.100558