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1. Introduction

In recent years, the concept of antiferromagnetic spin-

tronics has seen active development [1–3], due to the

potential of using the advantages of antiferromagnetically

ordered materials in modern technologies The stability of

antiferromagnets to the action of an external magnetic field,

high-speed magnetization dynamics and good transport

properties make these materials attractive for application in

random access memory devices, including the application as

components of spin-tunnel magnetoresistive elements [4,5].
The antiparallel orientation of spins in antiferromagnets

is responsible for (i) the absence of scattering fields

in them as a result of compensation for the resulting

magnetization of the crystal; (ii) the occurrence of a

pair of torques resulting in high frequencies of magneti-

zation precession; high speeds of movement of magnetic

domain boundaries and other technologically important

effects.

The variety of electrical properties also ensures the

multifunctionality of antiferromagnetics. Classical antifer-

romagnetics — oxides with antiferromagnetic (AFM) spin

ordering are mostly dielectrics; in technological terms, AFM

multiferroic oxides are relevant, promising for applying

in energy-saving devices and technologies. The AFM

semimetals and conductors, CuMnAs, Mn2Au, Mn3Sn,

Mn3Ge, Mn3Pt, are attracting an increasing attention of

researchers, mainly because the magnetic state in them

can be switched under the impact of electric and spin-

polarized currents; the effect of giant magnetoresistance

is realized; there are additional rotational moments that

participate in the spin transfer effect; the anomalous Hall

effect features can be observed which are not present

in most AFM. A series of theoretical and experimental

works 2016−2019 covers the study of the nature of these

effects [4–12].

Conducting antiferromagnetics offer interesting prospects

for technological applications in spintronics. We will limit

ourselves in this paper to the range of issues associated

with the impact of electric and spin currents on the

magnetic structure of conducting antiferromagnetics, which

is a relevant aspect for the realization of antiferromagnetic

multilevel memory [13]. To be definite, let us review

the antiferromagnetics CuMnAs and Mn2Au, the electronic

structure, magnetic and transport properties of which have

been actively studied during the recent years [5,6,14,15]

in connection with the studies of high-speed dynamics of

domain boundaries [7,16].

The goal of this work is to study the opportunities

of optimizing magnetoresistance effects in spin-tunneling

devices where a conductive antiferromagnet is applied as

a free magnetic layer. To solve this problem, it is necessary

to study the magnetic states that can be implemented

in a free layer of an antiferromagnetic under the impact

of a spin current, for example, through a tunnel contact

separating the polarizer layer and the free layer of a

magnetoresistance device. Let us determine the magnetic

configurations realized in antiferromagnetics of tetragonal

symmetry using the methods of theory group analysis and
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analyze the effects related to the action of charge and spin

currents.

2. Spin currents. Problem formulation

The problem of magnetic states in an antiferromagnet

occurring due to the action of spin-polarized currents can

be solved using the Lagrangian formalism technique, the

Lagrange function and the Rayleigh dissipative function

have the form [17,18]

L = χ⊥ l̇ /2γ
2 − χ⊥H

[

l × l̇
]

/γ − 8−W,

R = αM0 l̇
2/2γ, (1)

where γ — gyromagnetic ratio, α — dissipation parameter,

l — unit vector of antiferromagnetism, 8 — thermodynamic

potential of the system, W — energy density associated with

torques acting from spin-polarized currents.

Spin-polarized currents are currents related to spin trans-

fer processes are determined by relations of the form

jσ =
∑

i

Vi ⊗ si , |jσ | = p
~s
e

J, (2)

where p = (N+ − N−)/(N+ + N−) — spin polarization,

N∓ — number of electrons with spin s = ∓1/2.

The peculiarity of spin currents from the point of

view of symmetry is that the spin current does not

change the sign in case of the time inversion, however

it changes the sign in case of spatial inversion like the

electric current (z → −z , y → −y , x → −x). Spin currents

can be of two types: (i) injection currents j s
i j , used

in spintronics in multilayer nanostructures in experiments

such as STT (due to the angular momentum transfer

effect) or spin-Hall effects, (ii) spin currents, as part

of the spin-polarized current arising in magnetic-ordered

materials according to Mott’s idea. In this case, the

charging current can arise due to external potential differ-

ences, temperature gradients and concentration gradients.

An example is spin currents caused by the Seebeck

effect

J T
s = −

~

2e
σ∇T,

σ — Seebeck coefficient [19].

3. Magnetic structure of conducting
antiferromagnetics. CuMnAs, Mn2Au

Let us review the crystal structure and magnetic prop-

erties of antiferromagnetics CuMnAs and Mn2Au. The

lattice cells of CuMnAs and Mn2Au crystals contain four

CuMnAs and Mn2Au molecules; the crystal structures of

CuMnAs and Mn2Au are described by space symmetry

groups D7
4h and D17

4h, respectively. In both cases, the

Mn3+ ions occupy positions 4c in the Wyckoff notation.
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Figure 1. a — lattice cell CuMnAs; b — projection of the cell

onto the plane ab, position of the main symmetry elements.

Groups D7
4h and D17

4h contain a set of 16 symmetry op-

erations, from which independent elements 4+
2z , 2d , 1̄ can

be selected as group oscillators. Further, let us review

the CuMnAs antiferromagnetic for the illustration and the

results obtained will also be valid for Mn2Au due to the

symmetry.

The location of symmetry elements — second-order

helical axes 21y , 21y , fourth-order helical axis 4+
2z , second-

order axis 2d and inversion 1̄ in the CuMnAs lattice cell, as

well as on its projection onto the plane perpendicular to the

main axis of the crystal 4+
2z , shown in the Figure 1. Mn2+

ions occupy double positions 2c{4mm} with coordinates:

(0, 1/2, z ) = (0, 0.50, 0.16402).

The nature of magnetic ordering is associated with the

crystal structure. Mn3+ ions in CuMnAs form an anti-

ferromagnetic ordered G-type structure at temperatures of

T = 330−360K according to neutron diffraction data [20].
Let us introduce the basis vectors of magnetic sublattices as
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Table 1. Permutation transformations of Mn3+ ions and basis

vectors under the impact of group generators GF

GF 1 2 3 4 GF F A G C

1̄ 2 1 4 3 1̄ F −A −G C

4+
2z 4 3 2 1 4+

2z F −A −G −C

2d 2 1 4 3 2d F −A −G C

magnetic order parameters

F = µ1 + µ2 + µ3 + µ4,

A = µ1 − µ2 − µ3 + µ4,

G = µ1 − µ2 + µ3 − µ4,

C = µ1 + µ2 − µ3 − µ4. (3)

Since the magnetic moments of the ions are identical in

magnitude, |µ1| = |µ2| = |µ3| = |µ4|, µ1 ↑↑ µ3, µ2 ↑↑ µ4,

µ1 ↑↓ µ2, µ3 ↑↓ µ4, it is convenient to proceed to the

approximation of a two-sublattice magnet

M =
1

2M0

(M1 + M2), L =
1

2M0

(M1 −M2), (4)

where M0 — the sublattice magnetization value,

M1 = µ1 + µ3, M2 = µ2 + µ4.

Let us make up a position code from the generators of

the group, specifying the permutation properties of the ions

in accordance with the Figure 1

1̄

(

1− 2

3− 4

)

4+
2z

(

1− 4

2− 4

)

2d

(

1− 2

3− 4

)

.

Table 2. Irreducible representations (IR) of the group D7
4h and basis functions

1̄ 4+
2z 2d M i , Li Js

i j

Ŵ1 1 1 1 L2
x + L2

y

Ŵ2 1 1 −1 Mz , Hz

Ŵ3 −1 −1 1 Lz j s
xy + j s

yx

Ŵ4 −1 1 −1 Jz , Ez

Ŵ5 −1 1 1 j s
zz , j s

xx + j s
yy

Ŵ6 −1 −1 −1 Mz Lz j s
xx − j z

yy

Ŵ7 1 −1 1 Mz Lz Jz

Ŵ8

(

1 0

0 1

) (

0 1

−1 0

) (

0 1

1 0

) (

Mx

My

)

,

(

Hx

Hy

)

Ŵ9

(

0 −1

−1 0

) (

0 −1

1 0

) (

0 −1

−1 0

) (

Lx

Ly

)

Ŵ10

(

−1 0

0 −1

) (

0 1

−1 0

) (

0 1

1 0

) (

Jx

Jy

)

,

(

Ex

Ey

)

Ŵ11

(

−1 0

0 −1

) (

0 1

−1 0

) (

0 −1

−1 0

) (

Js
zx

Js
zy

)

Table 1 shows how the positions of ions are transformed

and the basis vectors are transformed under the impact of

generators of the group D7
4h.

Let us obtain the code (Turov indices) for the AFM

vector G using Table 1:

1̄(−)4+
2z (−)2d(−). (5)

Let us classify the ferro- and antiferromagnetism vectors

(M and L) using code (5) which are parameters of the

magnetic ordering of CuMnAs, as well as the components

of the spin (Js ) and charge currents (J) according to the

irreducible representations of the crystal symmetry group

(Table 2). Let us note that the indices i and j in the

spin current tensor j s
i j are associated with the components

of electric current J i and magnetization M j , while the

action of the symmetry operations 4+
2z and 2d is such that

j s
i j = j s

ji .

Ŵi (i = 1−10) as basis functions for irreducible repre-

sentations in various situations can be taken as even and

odd quantities with respect to time inversion, for example,

J and E. We believe that such a dichotomy will not cause

difficulties for the reader depending on the specific physical

situation.

Let us consider the interaction of spin currents with

the components of the antiferromagnetic vector L. The

following expressions for the energy of interaction of spin

currents with the components of the vector L can be

obtained from Table 2, using the operations of multiplication

of irreducible representations

W = a1(J
s
xz Ly + Js

yz Lx ) + a2(J
s
z x Ly + Js

yz Lx )

+ a3(J
s
xy Lz + Js

yz Lx ) + a4(J
s
xx − Js

yy)Hz Lz . (6)
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A quadratic form composed of vector compo-

nents L,M,H, E is needed to study spin dynamics, which

determines the total thermodynamic potential of the system,

which includes exchange energy, anisotropy energy, Zeeman

energy and magnetoelectric energy. It can also be composed

using Table 2.

8 = aM 2 + c1(L
2
x + L2

y ) + c2L2
z + d(M · L)2

+ g1Lz (Mx Ey + My Ex) + g2Mz (Lx Ey + Ly Ex )

+ g3Ez (Ly Mx + Lx My ). (7)

An expression of the form (6) can be considered as

a component of the general theory (diagram) for study-

ing the physical properties of antiferromagnetics, devel-

oped by Soviet scientists Dzyaloshinski, Borovik-Romanov,

Turov [21–27] (see also Chapter 14 in [27]), based on the

use of space symmetry groups of crystals. This diagram,

i.e. formulas (1), (6), (7) can be used to analyze the spin

dynamics of conducting antiferromagnets, which has been

widely studied in recent years.

Until now, the observed singularities of the dynam-

ics of the antiferromagnetic spin systems CuMnAs and

Mn2Au [4–8,12,16] were explained as part of the concept

of NSOT — Neel spin orbital torque, obtained by the

authors of the papers [6,8,12,16] based on microscopic

consideration.

The approach presented in this paper allows studying

the spin dynamics of conducting antiferromagnets from a

more general position, since it is based on the use of the

spatial symmetry of these materials. We believe that this

approach could be a useful complement to the pioneering

work mentioned above. We do not aim to fully develop this

theory in this short report. We only point out that, using the

quadratic form of the thermodynamic potential considered

above and substituting it into the Lagrangian of system (1)
taking into account (6) and (7), we obtain a complete

diagram for describing the spin dynamics of conducting

antiferromagnetics as part of the symmetry approach.
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