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Jahn-Teller (JT) magnets are compounds based on Jahn-Teller 3d- and 4d-ions with the tn1
2g en2

g configurations in a

highly symmetric surroundings and with a ground state orbital E-doublet which are characterized by competition of

various electronic degrees of freedom and strong electron-lattice interaction. In this paper, we present a generalized

model of effective charge triplets, which allows, within a unified approach and in the most general form, to take into

account charge, spin, orbital and lattice degrees of freedom for so-called single-band JT-magnets such as rare-earth

nickelates RNiO3.
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1. Introduction

Jahn-Teller (JT) magnets include compounds based on

Jahn-Teller 3d- and 4d-ions with tn1
2gen2

g type configurations

in highly symmetric octahedral, cubic or tetrahedral envi-

ronment and with ground orbital E-doublet [1–5]. These are

compounds based on tetra complexes with the configura-

tion d1 (Ti3+, V4+, Cr5+), low-spin (LS) configuration d3

(V2+, Cr3+, Mn4+), high-spin (HS) configuration d6 (Fe2+,
Co3+), octa complexes with HS configuration d4 (Cr2+,
Mn3+, Fe4+, Ru4+), LS configuration d7 (Co2+, Ni3+,

Pd3+), as well as octa complexes with the configuration d9

(Cu2+, Ni1+, Pd1+, Ag2+) [2–5] (see Table 1).

All JT configurations of d-ions include one eg -electron

or one eg -hole over stable fully or half-filled shells. They

are similar in this sense to the configurations of a large

family of ions with one ns -electron over filled shells for

example 6s-electron in Hg+, Tl2+, Pb3+, Bi4+. These ionic

configurations are unstable with respect to the dispropor-

tionation reaction, or even non-existent (missing oxidation

states [6]). For instance, bismuth in BaBiO3 prefers stable

valence states of Bi3+ and Bi5+ with completely filled

shells instead of the nominal valence 4+. However, unlike

ions with ns -electrons, for JT-ions we are dealing with

orbital degeneracy for eg -electrons/holes, which means that

there is a possibility of competition between the Jahn-

Teller effect resulting in the orbital ordering [1], and the

anti-JT disproportionation effect resulting in the formation

of a system of electron and hole centers of S-type with

an orbitally non-degenerate ground state [2–5], equivalent
to a system of effective composite spin-singlet or spin-

triplet bosons in a non-magnetic, or a magnetic lattice

(see Table 1).

The class of JT-magnets includes a large number of

promising materials with competition of orbital, spin and

charge degrees of freedom, which are in the focus of mo-

dern condensed matter physics such as manganites RMnO3,

ferrates (Ca,Sr)FeO3, ruthenates RuO2, (Ca,Sr)RuO3,

(Ca,Sr)2RuO4, a wide range of Fe-pnictides (FePn) and

Fe-chalcogenides (FeCh), 3D nickelates RNiO3, 3D cuprate

KCuF3, 2D cuprates (La2CuO4, . . .) and nickelates RNiO2,

silver-based compounds (AgO, AgF2), ruthenium-cuprates

RuSr2GdCu2O8 . . . [1–5] (see Table 1). These materials

have a rich range of unique properties from various types of

orbital [1], spin, charge, and spin-charge ordering, unusual

metallic behavior (
”
strange, bad metal“), to metal-insulator

transitions and
”
exotic“ spin-triplet superconductivity [2–5].

A number of JT-magnets are either multiferroics (RMnO3,

CuO [7,8]), or are considered as promising multiferroics

(RNiO3 [9]).

The anti-JT disproportionation model predicts the spin-

triplet superconductivity in ruthenates Sr2RuO4 and RuO2,

Fe-pnictides/chalcogenides FePn/FeCh, manganite LaMnO3,

although one or another spin-charge order is imple-

mented in most known
”
candidates“ (Ca(Sr)FeO3, RNiO3,

AgO) [2–5]. In particular, the model assumes that

superconducting carriers in FePn/FeCh compounds consist

of eg holes, and not of t2g electrons [2–5,10], as predicted by

the one-electron multi-orbital band model. The most optimal

conditions for HTSC with spinless local bosons and spinless

lattice can be achieved only for low-symmetry quasi-two-

dimensional d9-systems such as 2D cuprates and nickelates.
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Table 1. Examples of Jahn-Teller 3dn- and 4dn-configurations and ions indicating local symmetry, the structure of the effective composite

boson and the corresponding lattice formed as a result of the anti-Jahn-Teller disproportionation reaction. The last column contains

examples of real JT-magnets

JT configuration
Symm. LS/HS Composite boson Lattice Examples of compounds

JT-ions

3d1(e1
g):

2E
Tetra −

e2
g :

3A2g A1g β-Sr2VO4

Ti3+, V4+, Cr5+ s = 1 S = 0 (Sr,Ba)3Cr2O8

3d3(e3
g):

2E
Tetra LS

e2
g :

3A2g A1g
Ba2VGe2O7 (?)

V2+, Cr3+, Mn4+ s = 1 S = 0

3d4(t32g e1
g):

5E e2
g :

3A2g A2g

CrO, CrF2

Cr2+, Mn3+, Fe4+ s = 1 S = 3/2

Sr2FeO4

Octa HS (Ca,Sr,Ba)FeO3

(Ca,Sr,Ba)3Fe2O7

RMnO3, LaMn7O12

4d4(t32g e1
g):

5E e2
g :

3A2g A2g
(Ca,Sr)2RuO4

Ru4+
Octa HS

s = 1 S = 3/2
(Ca,Sr)RuO3, RuO2

(Ca,Sr)3Ru2O7

3d6(e3
gt32g ):

5E
Tetra HS

e2
g :

3A2g A1g
FePn, FeCh, Na5CoO4

Fe2+, Co3+ s = 1 S = 3/2

3d7(t62g e1
g):

2E
Octa LS

e2
g :

3A2g A1g RNiO3

Co2+, Ni3+ s = 1 S = 0 (Li,Na,Ag)NiO2

3d9(t62g e3
g):

2E
Octa −

e2
g :

3A2g A1g
CuF2, KCuF3, K2CuF4

Cu2+, Ni+ s = 1 S = 0

4d9(t62g e3
g):

2E
Octa −

e2
g :

3A2g A1g
AgO (Ag1+Ag3+O2)

Pd+, Ag2+ s = 1 S = 0

3d9(t62g e3
g):

2B1g Octa∗
−

b2
1g :

1A1g A1g HTSC cuprates

Cu2+, Ni+ quadr s = 0 S = 0 CuO, RNiO2

4d9(t62g e3
g):

2B1g
quadr −

b2
1g :

1A1g A1g AgF2, KAgF3

Pd+, Ag2+ s = 0 S = 0 Cs2AgF4, LaPdO2 (?)

Table 2. Pseudospin, spin and orbital structure of three charge centers NiO6 in orthonikelates RNiO3

Charge 6 = 1 Conventional Orbital
d-center Nominal Cluster

pseudospin projection spin state

Electron (d8) Ni2+ [NiO6]
10− MS = −1 1 A2g

Parent (d7) Ni3+ [NiO6]
9− MS = 0 1/2 Eg

Hole (d6) Ni4+ [NiO6]
8− MS = +1 0 A1g

A model of charge triplets was proposed and de-

veloped in [11–20] to describe the electronic structure

and phase diagrams of quasi-two-dimensional cuprates of

La2−xSrxCuO4 type, within which it was possible to simu-

late complex phase diagrams of CuO2-planes resulting from

the competition of the fermi-metallic and antiferromagnetic

dielectric states, charge ordering and spin-singlet bosonic

superconductivity.

We present in this paper a generalized model of effective

charge triplets, which allows taking into account in the

most general way the competition of charge, spin, orbital

and lattice degrees of freedom for the so-called single-band

JT-magnets such as rare-earth nickelates RNiO3 (R — rare

earth or yttrium) [21].

2. Charge triplet model: 6 = 1

pseudospin formalism

The generalized model of effective charge triplets assumes

consideration of some highly symmetric
”
parental“ configu-
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ration of a JT-magnet of type RNiO3 with ideal octahedra

NiO6, the low-energy state of which is formed by a charge

triplet [NiO6]
10−,9−,8− (nominally Ni2+,3+,4+) with different

spin and orbital ground states (see Table 2). In accordance

with Rice−Sneddon idea proposed to describe the three

charge states of Bi3+,4+,5+ in BaBiO3 [22], and developed

in Ref. [11–20] for HTSC cuprates, we associate three

charge states of the cluster NiO6 with three projections

of pseudospin 6 = 1 and use well-known spin algebra to

describe the charge degree of freedom.

First of all, it should be noted that formally the local

pseudospin 6 = 1 assumes the presence of eight (three

”
dipole“ and five

”
quadrupole“) independent operators

and corresponding local parameters of the charge order

(in irreducible components):

6̂0 = 6̂z ; 6̂± = ∓ 1√
2

(6̂x ± i6̂y ); 6̂2
z ; 6̂2

±;

T̂± =
1

2
{6̂z , 6̂±}. (1)

Operators

P̂0 = (1− 6̂2
z ); P̂± =

1

2
6̂z (1± 6̂z ) (2)

actually are projection operators for charge states with

a projection of pseudospin M = 0,±1, respectively, and

the mean values 〈P̂0〉, 〈P̂±〉 actually represent the local

densities of the corresponding charge states.

The operators 6̂± and T̂± change the projection of the

pseudospin to ±1. The operator 6̂2
± changes the projection

of the pseudospin to ±2, so that it can be considered as the

operator of the creation/annihilation of a composite boson.

The corresponding local averages 〈6̂±〉, 〈T̂±〉, 〈6̂2
±〉 will

describe various variants of
”
off-diagonal“ charge order, in

particular, coherent metallic and superconducting states.

Taking into account the spin and orbital states

for the charge components, we should extend the

local Hilbert space to the
”
pseudospin-orbital-spin

octet“ |1M; Ŵµ; Sm〉(|10;Egµ;
1
2
ν〉; |1−1;A1g0; 1m〉;

|1 + 1;A1g0; 00〉), where µ = 0; 2, ν = ± 1
2
, m = 0;±1

(|Eg0〉 ∝ dz 2, |Eg2〉 ∝ dx2−y2) and consider JT-magnet in

the general case as a system of such
”
octets“. This approach

will allow taking into account the effects of competition of

various degrees of freedom in the most general way.

3. Effective Hamiltonian of JT-magnets:

”
atomic“ limit

We neglect the effects of one- and two-particle charge

transfer in the simplest
”
atomic“ limit, so that the effective

Hamiltonian of the JT-magnet will have the the form as

follows

Ĥat = Ĥch + Ĥel−lat + Hlat + Ĥeff
s pin, (3)

where

Ĥch = 1
∑

i

6̂2
iz +

∑

i> j

Vi j6̂iz 6̂ jz − µ
∑

i

6̂iz (4)

is the effective Hamiltonian of charge interactions (local and
nonlocal correlations), µ — chemical potential determined

from the condition of constancy of quantity
∑

i〈6̂iz 〉, in

particular the condition of electroneutrality. The quantity

and sign of the parameter 1 = 1
2

U , where U is an

effective parameter of local correlations, are of fundamental

importance for JT-magnet. Large positive values of U make

disproportionation energetically unfavourable and stabilize

the JT center, leading to local/cooperative JT ordering with

orbital order (OO) and, as a rule, to the state of a magnetic

insulator. Large negative values of U (negative−U model)
make anti-JT disproportionation energetically advantageous,

resulting in the formation of a system of electronic and hole

centers with a wide range of possible phase states.

The effective Hamiltonian of the linear electron-lattice

interaction includes two fundamentally important contri-

butions for charge states with a projection of pseudospin

M = 0, i. e. for the JT center, and M = ±1, that is, for the

electron/hole centers, respectively

Hel−lat = VE

∑

i

P̂0(v̂
E
i QE

i )P̂0 + a
∑

i

(6̂2
iz + λ6̂iz )Q

A1g

i ,

(5)
where the first term is the Jahn-Teller contribution of

interaction with the local mode of displacements QE

(QE0 ∝ dz 2, QE2 ∝ dx2−y2), VE — the constant of the JT

interaction, and the matrices v̂E0, v̂E2 on the basis of states

|Eg0〉 and |Eg2〉 coincide with the Pauli matrices σ̂z and σ̂x ,

respectively [1]. The second term in (5) is interaction with

the local full-symmetric (breathing) displacement mode for

charge states with a projection of pseudospin M = ±1, a
and λ are constants of the electron-lattice interaction. It

is the interaction with the local full-symmetric mode that

makes it possible to explain both the mechanism and the

features of the metal-insulator transition in orthonickelates

RNiO3 [23]. Naturally, taking into account electron-lattice

interaction requires inclusion of the elastic energy into the

Hamiltonian of the JT-magnet

Hlat =
1

2

∑

iŴv

KŴ(Q
Ŵv
i )2 + . . . , (6)

where we identified only a local contribution. Obviously,

the JT stabilization energy [1]

EJT =
V 2

E

2KE
(7)

is the most important energy factor in stabilizing the JT

center in the lattice.

In general, the effective spin-Hamiltonian of a JT-magnet

has a complex structure. Many features of the spin inter-

actions of the JT centers are considered in the well-known
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paper of Kugel and Khomskii [1]. Below we will consider

the contribution to the effective spin-Hamiltonian of the

RNiO3 JT-magnet of the [NiO6]
10− (nominally Ni2+) charge

spin-triplet states corresponding to the M = −1 component

of the charge pseudospin, which can be represented as

follows

Ĥeff
s pin = P̂−1Ĥs pinP̂−1, (8)

where P̂−1 is the corresponding projection operator, and

spin-Hamiltonian

Ĥs pin = Vmd +
∑

i> j

J i j(Ŝi Ŝ j) +
∑

i> j

j i j(Ŝi Ŝ j)
2

+ K
∑

i

(mi Ŝi)(ni Ŝi) −
∑

i

(h Ŝi) (9)

includes typical terms, Vmd is magnetodipole interaction, J i j

and j i j are integrals of bilinear and biquadratic isotropic ex-

change, respectively, K is constant of single-ion anisotropy,

and m and n are unit vectors defining in the general case

two characteristic axes of second-order single-ion anisotropy,

h — external field [3–5].

In general, the effective Hamiltonian of the model of

charge triplets (3)−(9) can serve as the basis for both quan-

tum mechanical and classical descriptions of orthonickelate

type JT-magnets using methods typical of traditional spin-

magnetic systems, in particular, the theory of the effective

field [16,17].

4. Conclusion

We proposed a generalized model of effective charge

triplets to describe the electronic structure of single-band

JT-magnets of the type of rare earth nickelates RNiO3 in

which the NiO sublattice is considered as a system of

”
pseudospin-orbital-spin octets“. The effective Hamiltonian

of the model can serve as the basis for both quantum

mechanical and classical descriptions of low-energy states

and phase diagrams of JT-magnets within the framework

of a unified approach that takes into account charge, spin,

orbital and lattice degrees of freedom in the most general

form.
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