Структурные преобразования и оптические свойства халькогенидных стекол As₂S₃

© И.В. Фекешгази [¶], К.В. Май, Н.И. Мателешко*, В.М. Мица*, Е.И. Боркач*

Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины, 03028 Киев, Украина

* Ужгородский национальный университет, 88000 Ужгород, Украина

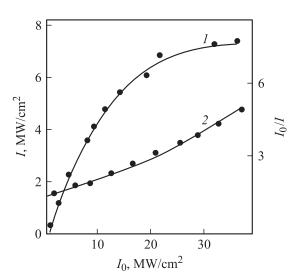
(Получена 27 декабря 2004 г. Принята к печати 12 января 2005 г.)

Исследовано влияние температуры выдержки расплава (T_i) и скорости закалки (V_i) на структуру и оптические свойства стекол As_2S_3 . Установлено, что с ростом значений T_i и V_i наблюдается увеличение ширины запрещенной зоны стекол, уменьшение их плотности, показателя преломления (от 2.71 до 2.48), а также коэффициента двухфотонного поглощения (от 0.37 до 0.15 см/МВт), что сопровождается возрастанием значений порога лучевой прочности.

1. Введение

Халькогенидные стекла трисульфида мышьяка относятся к числу материалов, перспективных для использования в качестве оптических сред при изготовлении различных элементов интегральной оптики и оптоэлектроники, а также лазерной техники [1–5]. В то же время относительно низкая лучевая прочность этих стекол является основным ограничением для их широкого использования в элементах силовой оптики. Как известно, лучевая прочность материала определяется его оптическим качеством (степенью однородности, наличием или отсутствием механических напряжений и примесей), от которого зависят линейные и нелинейные потери излучения на поглощение и рассеяние. В свою очередь оптическое качество стекол зависит от технологических условий их синтеза, при которых в объеме формируются различные структурно-топологические группы. Анализ результатов проводится относительно влияния структурно-топологических преобразований на показатель преломления (n), константы линейного (α) и двухфотонного (β) поглощения, спектры комбинационного рассеяния (КР), а также динамическую и лучевую прочности стекол трисульфида мышьяка As₂S₃.

2. Получение образцов и методы их исследований


Наиболее распространенным способом получения массивных стекол является быстрая закалка расплава вещества. Для исследований использовались образцы, которые синтезировались из элементарных компонент As и S марки ОСЧ-5 при комбинации трех температур выдержки расплава (T) и трех скоростей закалки (V). Температура $T_1 = 870 \, \mathrm{K}$ — минимальная температура, при которой взаимодействие мышьяка с серой происходит в реальных масштабах времени $(\sim 150 \, \mathrm{y}), T_2 = 1120 \, \mathrm{K}$ — температура, при которой обычно синтезируются сульфиды мышьяка, температура

 $T_3 = 1370 \, \mathrm{K}$ — максимальная температура, при которой молекулы $\mathrm{As_2S_3}$ еще не диссоциируют на элементарные компоненты.

Скорость $V_1 = 10^{-2} \, {\rm K/c}$ соответствует охлаждению расплава в технологической печи, скорость $V_2 = 1.5 \, {\rm K/c}$ реализуется при охлаждении ампул в воздушной среде при комнатной температуре и является оптимальной для синтеза сульфида мышьяка, а скорость $V_3 = 150 \, {\rm K/c}$ реализуется при охлаждении ампул в ледяной воде $(0^{\circ}{\rm C})$.

Исследование микроструктуры стекол проводилось методом просвечивающей электронной микроскопии (ПЭМ) на электронном микроскопе ЭМВ-100Б при ускоряющем напряжении 100 кВ [6]. Образцы для исследований толщиной 20—50 нм изготавливались на пьезоэлектрическом микротоме, оборудованном ванночкой для дистиллированной воды. Полученные сколы вылавливались на медную сетку и сразу после просушки устанавливались в колонну микроскопа.

При анализе объемной структуры стекол использовались стандартные критерии градаций ступеней микро-

Рис. 1. Зависимости интенсивности проходящего через образец излучения I(I), а также отношения $I_0/I(2)$ от интенсивности излучения рубинового лазера I_0 .

[¶] E-mail: fek_i@yahoo.com

T, K	V,K/c	ρ , Γ / cm ³	E_g , эВ	п (633 нм)	α , cm ⁻¹	β , cm/MBT	I_b , MBT/cm ²
	$V_1 = 10^{-2}$	3.201	2.12	2.712	2.16	0.37	30
$T_1 = 870$	$V_2 = 1.5$	3.195	2.15	2.69	1.17	0.16	45
	$V_3 = 150$	3.192	2.21	2.664	2.22	0.15	55
	$V_1 = 10^{-2}$	3.193	2.18	2.705	1.96	0.4	30
$T_2 = 1120$	$V_2 = 1.5$	3.190	2.22	2.65	2.53	0.25	36-40
	$V_3 = 150$	3.186	2.26	2.602	1.35	0.18	30-40
	$V_1 = 10^{-2}$	3.192	2.22	2.602	1.90	0.24	30
$T_3 = 1370$	$V_2 = 1.5$	3.184	2.30	2.59	1.855	0.17	36-40
	$V_3 = 150$	3.176	2.38	2.580	1.73	0.15	50-60

Физические параметры стеклообразного As₂S₃

дисперсности и микронеоднородности, которые определялись отношением количества четко контурированных границ к количеству псевдозерен на участке длиной $0.1\,\mathrm{mkm}$.

Значения коэффициентов линейных потерь и двухфотонного поглощения определялись по экспериментально измеренным зависимостям интенсивности проходящего света (I) от интенсивности (I_0) света, падающего на образец, которые имели сублинейный характер (рис. 1, кривая I) и удовлетворительно описывались формулой [7,8]

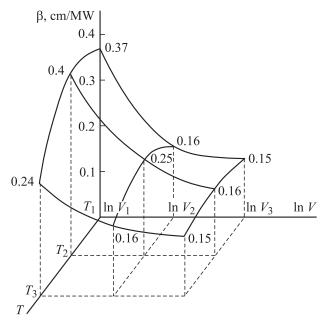
$$I = I_0 \frac{(1 - R_0)^2 \exp(-\alpha d)}{1 + \beta I_0 \alpha^{-1} (1 - R_0) [1 - \exp(-\alpha d)]},$$

где R_0 — коэффициент отражения света от поверхности образца толщиной d, а α и β — коэффициенты линейных потерь и двухфотонного поглощения соответственно.

Обратное пропускание

$$I_0/I = \frac{1 + \beta I_0 \alpha^{-1} (1 - R_0)[1 - \exp(-\alpha d)]}{(1 - R_0)^2 \exp(-\alpha d)}$$

оказалось прямо пропорциональным I_0 (рис. 1, кривая 2), что указывает на доминирующий вклад двухфотонных переходов в процесс нелинейного поглощения света.


Рассчитанные по приведенным на рис. 1 зависимостям значения коэффициентов линейных потерь α и двухфотонного поглощения β приведены в таблице.

Порог оптического пробоя I_b определялся как минимальная плотность лазерного излучения, при которой появляется яркая вспышка на поверхности образца и, как следствие, резко уменьшается интенсивность I проходящего импульса излучения рубинового лазера длительностью $20\,\mathrm{hc}$ на полувысоте гауссовского временного распределения.

3. Результаты исследований и обсуждение

Формирование различных структурно-топологических элементов проводилось путем выбора режимов (T_i, V_i) синтеза стекол и скоростей их закалки. Установлено, что при варьировании (T_i, V_i) в указанных пределах

реализуется основной набор возможных структурных группировок, которые можно разделить на два основных типа: тип A — гомогенный, главным мотивом которого являются бипирамидальные структурные единицы AsS_{3/2}, присущие стеклам с микродисперсной структурой разной степени связности и непрерывной структурной сеткой; тип В, который образован гетероатомными псевдомолекулярными единицами $As_2S_{4/2}$, As_3S_3 , As_2S_5 и гомогенными агрегатами серы S₈. Эти результаты подтверждаются также сравнительным анализом спектров КР стекол трисульфида мышьяка в области валентных колебаний [9,10]. Тип А реализуется при минимальных значениях (T_i, V_i) , а тип В — при максимальных. При этом наблюдается увеличение ширины запрещенной зоны (E_g) стекол, снижение их плотности ρ , уменьшение показателя преломления от n = 2.71 до 2.48 и коэффициента двухфотонного поглощения от $\beta = 0.37$ до 0.15 см/МВт (рис. 2), что сопровождается соот-

Рис. 2. Зависимости константы двухфотонного поглощения β от температуры выдержки расплава T_i и скорости закалки V_i стекол As₂S₃.

ветствующим возрастанием значения порога лучевой прочности I_b (см. таблицу).

Электронно-микроскопические исследования объема стекол показали, что при технологическом режиме (T_1,V_1) реализуется однородная матрица с равномерно распределенными микрокристаллическими включениями As_2S_3 размером 4–10 нм, при (T_1,V_2) имеются увязанные микродисперсные псевдозерна размером 1-2 нм, а при (T_1,V_3) — сферические микровключения диаметром 5-10 нм. В режимах (T_2,V_1) и (T_2,V_2) структура стекол аналогична полученной в режиме (T_1,V_2) . В режиме (T_3,V_1) имеет место относительно однородная микроструктура, образованная увязанными микродисперсными каплевидными псевдозернами диаметром меньше 50 нм, при соблюдении режима (T_3,V_2) наблюдается относительно однородная совокупность гетерогенных псевдозерен размером 5–10 нм, а в режиме (T_3,V_3) — сферические микровключения размером 30-50 нм относительно равномерно распределены в микродисперсной матрице.

Спектральные зависимости коэффициента линейного поглощения вблизи края собственного поглощения имеют сложный характер. В комбинации с нелинейными оптическими потерями они определяют уровень лучевой прочности стекол к потокам лазерного излучения.

На основе сравнительного анализа спектров КР стекол трисульфида мышьяка в области валентных колебаний показано, что с ростом T_i и V_i в матрице структуры стекла увеличивается концентрация структурных единиц $\mathrm{As}_2\mathrm{S}_{4/2}$, $\mathrm{As}_{3/3}$, S_8 , S_n [9]. При таком возрастании степень разрыхления структуры, плотность и скорость ультразвука в стекле $\mathrm{As}_2\mathrm{S}_3$ уменьшаются и соответственно уменьшается динамическая стойкость стекла, выраженная через упругие модули.

Результаты наших исследований подтверждают, что низкочастотная спектроскопия КР в области "бозоновского максимума" совместно с данными ультразвуковых исследований является эффективным методом определения размеров структурной корреляции в стеклах в различных приближениях их строения [10]. Разрешающая способность низкочастотной спектроскопии КР выше разрешающей способности нейтронографических исследований стекол на этом же участке спектра.

При вариации условий синтеза стекол As_2S_3 с ростом температуры расплава и скорости его закалки (за исключением условий (T_1,V_2)) наблюдается низкочастотный сдвиг "бозоновского" максимума от $26 \, \mathrm{cm}^{-1}$ в режиме (T_1,V_1) до $20 \, \mathrm{cm}^{-1}$ в режиме (T_3,V_3) , что сопровождается увеличением радиуса структурной корреляции R в гомогенном приближении строения стекол и длины L структурной корреляции в цепочечном приближении. Для всех случаев выполняется соотношение $L/R \approx 2$.

Кроме того, в бинарных стеклах As_yS_{1-y} было обнаружено, что при возрастании средней координации z=3y+2(1-y) наблюдается сдвиг низкочастотного максимума в высокочастотную область спектра от $19\,\mathrm{cm}^{-1}$ (z=2.1) до $26\,\mathrm{cm}^{-1}$ (z=2.4), что сопровождается понижением интенсивности этого максимума,

немонотонным уменьшением размеров цепочек L от 1.5 до 1.4 нм. Минимуму L = 1.42 нм при z = 2.4 отвечает максимум динамической стойкости. Эти координационные изменения (от z = 2.1 до 2.4) и соответствующий рост упругих модулей стекол $As_{\nu}S_{1-\nu}$ согласуются с положениями топологико-кластерной (ТК) концепции о возрастании динамической стойкости матрицы структуры стекол вследствие увеличения межцепочечного взаимодействия и сшивания одномерных кластеров в слоисто-цепочечные при приближении к составу $As_{40}S_{60}$ (z=2.4), (переход $1D\to 2D$). Изменение состава $As_{40}S_{60}$ в сторону обогащения мышьяком ($As_{42}S_{58}$) приводит к росту интенсивности низкочастотных колебаний и возрастанию размеров цепочечных кластеров. Одновременно с ростом L наблюдается снижение динамической стойкости стекол при z > 2.4 и отклонение от теоретически предсказываемого ТК концепцией роста упругих модулей (по закону $(z-2.4)^{3/2}$). Выявленное разрыхление матрицы структуры стекол $As_{\nu}S_{1-\nu}$ при z > 2.4 сопровождается образованием новых структурных единиц $As_2S_{4/2}$ и $As_{3/3}$.

Уменьшение значения коэффициента двухфотонного поглощения с ростом T_i или V_i обусловлено увеличением ширины запрещенной зоны [11,12]. Выполненные теоретические оценки лучевой стойкости стекла в адиабатическом приближении показали, что теоретические и экспериментальные данные различаются почти на 3 порядка. В то же время, согласно теории, значения порога лучевой стойкости возрастают, поскольку значения коэффициентов линейных и нелинейных потерь уменьшаются, а ширина запрещенной зоны возрастает.

4. Заключение

Электронно-микроскопическими исследованиями установлены закономерности формирования микроструктуры стекол в зависимости от температуры выдержки расплава и скорости закалки. Наиболее оптически однородные стекла формируются при технологических режимах (T_1,V_2) , (T_2,V_1) и (T_2,V_2) .

С ростом значений T_i и V_i наблюдается возрастание ширины запрещенной зоны стекол, снижение их плотности, уменьшение показателя преломления от 2.71 до 2.48, а также коэффициента двухфотонного поглощения от 0.37 до 0.15 см/МВт, что сопровождается соответствующим возрастанием значений порога лучевой прочности.

Работа выполнена при поддержке Государственного фонда фундаментальных исследований Министерства образования и науки Украины (проект Ф 7/273-2001).

Список литературы

- [1] З.У. Борисова. Халькогенидные полупроводниковые стекла (Л., Изд-во ЛГУ, 1983).
- [2] А. Фельц. Аморфные и стеклообразные неорганические твердые тела (М., Мир, 1986).

- [3] С.В. Свечников, В.В. Химинец, Н.И. Довгошей. Сложные некристаллические халькогениды и халькогалогениды и их применение в оптоэлектронике (Киев, Наук. думка, 1992).
- [4] Г.З. Виноградова. Стеклообразование и фазовые равновесия в халькогенидных системах (М., Наука, 1984).
- [5] M. Bertolotti, V. Chumash, E. Fazio, A. Ferrari, C. Sibilia. J. Appl. Phys., 74, 3024 (1993).
- [6] N. Mateleshko, E. Borkach. Semicond. Phys., Quant. Electron. Optoelectron., 7, 171 (2004).
- [7] I.V. Fekeshgazi, K.V. May, V.M. Mitsa, V.V. Roman. Proc. SPIE, 2648, 257 (1995).
- [8] V.V. Grabovskii, K.V. May, V.I. Prokhorenko, I.V. Fekeshgazi, D.Ya. Yatskiv. J. Appl. Spectrosc., 63, 586 (1996).
- [9] R. Holomb, V. Mitsa. Sol. St. Commun., **129** (10), 655 (2004).
- [10] Р. Голомб, Н. Вереш, М. Коош, М. Гомеш. Тр. 4-й Межд. конф. "Аморфные и микрокристаллические полупроводники" (СПб., 2004) с. 220.
- [11] I. Fekeshgazi, K. May, V. Mitsa, V. Roman, A. Vakaruk. Proc. SPIE, 2968, 256 (1997).
- [12] И.В. Фекешгази, К.В. Май, А.П. Клименко, В.М. Мица, С.Я. Иван. Тр. 4-й Межд. конф. "Аморфные и микрокристаллические полупроводники" (СПб., 2004) с. 152.

Редактор Л.В. Шаронова

Structure transformations and optical properties of chalcogenide As₂S₃ glasses

I.V. Fekeshgazi, K.V. May, N.I. Matelesko*, V.M. Mitsa*, E.I. Borkach*

V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine * Uzhgorod National University, 88000 Uzhgorod, Ukraine

Abstract Influence of the melt temperature (T_i) and the cooling velocity (V_i) on structure and optical properties of As_2S_3 glasses has been investigated. It was established, that with increasing of T_i and V_i values the forbidden gap width of glasses increase at the decreasing of their density, refractive indices (from 2.71 to 2.48) and two-photon absorption coefficient (from 0.37 to 0.15 cm/MW), that is accompanied by the appropriate increasing of optical damage threshold.