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Introduction

This paper reviews issues of interest for astronomy and

laser location of remote objects. The objective to observe

space objects located at a very large (stars) and at a finite

distance from a telescope is relevant for astronomy. The

objective of laser location of a space object moving in

the near-Earth orbit is of special interest in connection

with the problems of the space laser communication [1],
and also with the pollution of the near-Earth space

by space debris, the considerable part of which is not

catalogued [2]. In both cases the quality of the space

object image is substantially affected by the atmospheric

turbulence.

In state-of-the-art ground astronomic observatories, adap-

tive optical systems (AOS) are used to compensate adverse

impact of the atmospheric turbulence [3–6]. The essence

of the AOS operation consists in measurement of optical

distortions on the way of light travelling in the atmosphere

to the telescope and introduction of the required phase

distortions that compensate turbulence impact using an

adaptive mirror. For this purpose both the emission from

the observed object itself and emission from an artificial

source
”
ignited“ in its direction — laser guide star (LGS) [7]

can be used. The last case is relevant, if the object

has low brightness or has no astronomical sources bright

enough nearby. Besides, the object of interest and LGS

must be located within the isoplanar region, i. e. the angular

distance between them must be rather small, so that the light

from the object and LGS passes through the same optical

inhomogeneities. In real AOSs the efficiency of using the

Rayleigh LGS is limited the height of 10−20 km above the

Earth’s surface owing to decrease of the Rayleigh scattering

efficiency along with height increase. LGS formation in the

sodium layer at height of 90−100 km is more preferable,

since in this case optical inhomogeneities of the entire

meaningful atmosphere column are compensated.

Using the LGS approach is coupled with the problem

of finding the global tilt of the wavefront [8]. A laser

beam creating LGS and radiation from LGS, captured by

the telescope, pass through the same atmospheric optical

”
wedge“, which makes it impossible to determine the

value of the reference emission wavefront tilt. Various

approaches to solution of this problem are studied [9–12],
where numerical simulations plays a critical role [13,14].
Comparison of the results of analytical estimates and nu-

merical modeling of light propagation through the turbulent

atmosphere makes it possible to verify the numerical model

and to understand in more detail the impact of various

effects at quality of an astronomic object image formed

using adaptive optics.

Currently, when the laser space communication systems

are developed [1], one of the key problems is the problem

of precise positioning of the transmitted signal on a remote

receiver [15–17]. Experimental data on mutual correlation

of wavefront tilts from double stars turn out to be quite use-

ful [18,19]. For example, in paper [19] such data is provided

for the three pairs of stars at a different angular distance

between them, and also for one double star at different
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values of the angle of elevation. Naturally, the experimental

data was obtained under certain conditions of optical

weather. Numerical estimates present higher flexibility in

variation of both parameters of the outgoing laser radiation

and turbulent path, along which it propagates [20,21].
However, when performing numerical calculations, it is

necessary to take into account the finiteness of the outer

scale of turbulence as a parameter determining large-scale

optical aberrations.

The objective of this paper is computational study of

the possibility to generate a diffraction image of a natural

star and precision of its angular coordinate determination

using adaptive optics and joint use of reference radiation

of two types — from LGS, ignited in its direction, and the

second star at the angular distance substantially exceeding

the classic angle of isoplanatism. Results obtained in

3D calculations at different external scale of turbulence

are compared to the analytic assessments available in the

literature.

1. Problem formulation

The scheme of the problem is shown in Fig. 1.

Two natural stars are observed via a telescope located

on the Earth. Angular distance between them is

α = 10 arcsec = 48.5µrad — by 5 arcsec to the left and

right (along the axis x) from the vertical direction z . For

an observer on the Earth the stars are actually the point

sources of light. Since they are located at a great distance,

the curvature of the wavefront of their radiation that reached

the Earth is a negligibly low value. We believe that radiation

Space

10"

30 km

Turbulent
atmosphere

3 m

Entrance pupil

Star 1 Star 2

Figure 1. Scheme of problem of angular anisoplanatism

investigation.

from each star at the upper boundary of atmosphere has

a flat wavefront, which, passing via atmosphere, acquires

phase distortions. Light from stars observaed by the

telescope with a round entrance pupil either directly, or

after passage via AOS, is focused by a lens to obtain a star

image.

In calculations, the altitude model of structural character-

istic of the air refraction index is used C2
n(h) [22]. In the

surface layer C2
n = 2 · 10−15 cm−2/3, which is compliant

with the night observations on the flat terrain. It is

known that the main spatial parameters characterizing

the influence of atmosphere turbulence on light radiation

are Fried parameter r0, angle of isoplanatism θ0 and

isokinetic angle θT . Parameter θ0 characterizes the region of

isoplanatism tacking into account of all optical aberrations,

and parameter θT — taking into account only tilts of the

wavefront along the x - and y -axes.
In case of Kolmogorov spectrum of air refraction index

fluctuations, parameters r0, θ0 and θT are defined as [4]:

r0 =

(

0.423k2(sec ζ )

hmax
∫

h0

C2
n(ξ)dξ

)−3/5

, (1)

θ0 =

(

2.914k2(sec ζ )8/3
hmax
∫

h0

C2
n(ξ)ξ

5/3dξ

)−3/5

, (2)

θT =

(

0.668k2D−1/3(sec ζ )3
hmax
∫

h0

C2
n(ξ)ξ

2dξ

)−1/2

, (3)

where λ and k = 2π/λ — wavelength and wave number

of radiation, ζ — zenith angle, D — diameter of receiving

aperture of the telescope, h0 — height of receiving aperture

of the telescope above Earth’s surface, hmax — height of the

upper boundary of atmosphere. For the parameters set in

the calculations: λ = 0.55µm, ζ = 0◦, D = 1m, h0 = 3m,

hmax = 30 km we obtain that r0 = 5.9 cm, θ0 = 0.6 arcsec,

θT = 2.13 arcsec. It is important to note that θT < α

and θ0 ≪ α. Analytic formulae for r0, θ0, θT (1)−(3) are

the limit ones (bottom estimate), since in the Kolmogorov

model of turbulence the inner scale of distortions is l0 = 0,

and the outer scale is L0 = ∞. In reality parameters l0, L0

take on finite values.

2. Computational model

The light radiation propagation in the turbulent atmo-

sphere was calculated within integration of parabolic equa-

tion for the complex amplitude of the radiation field [23]:

2ik
∂E
∂z

+
∂2E
∂x2

+
∂2E
∂y2

+ k2εE = 0, (4)

where E(x , y, z ) — complex amplitude of the electric field

strength, ε(x , y, z ) — function describing fluctuations of

the dielectric permittivity of the medium. Equation (4)
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was solved numerically using the finite-difference scheme of

Ladagin [24], having zero amplitude error and phase error of

the fourth order with integration of a diffraction operator. A

continuous randomly inhomogeneous medium was replaced

with an equivalent chain of phase screens. The von Karman

model of the spatial spectrum of refractive index fluctuations

was used in the calculations [25]:

8n(κ⊥, κz ) = 0.033C2
n(κ

2
⊥

+ κ2z + κ20)
−11/6, (5)

where κ2 = κ2
⊥

+ κ2z = κ2x + κ2y + κ2z , κ — spatial fre-

quency, κ0 = 2π/L0 — lowest spatial frequency, L0 —
outer scale of turbulence. The highest spatial frequency

κm = 2π/l0 corresponds to the inner scale of turbu-

lence l0. Contribution to
”
energy“ of turbulence from

the lowest scales is negligible, therefore for spectrum (5)
l0 = 0. In the inertial interval 2πL−1

0 ≤ κ ≤ 2πl−1
0 the

von Karman spectrum corresponds to the theory of

Kolmogorov−Obukhov [26,27].
For the von Karman spectrum the following analytical

formula is known for calculation of the correlation function

of phase on a thin phase screen [28]:

Bϕ(r) = σ 2
ϕ

21/6

Ŵ(5/6)
(κ0r)5/6K5/6(κ0r), (6)

σ 2
ϕ = 2.4π2k2κ

−5/3
0 (0.033C2

n1z ), (7)

where r — distance between two screen points, Ŵ(−) —
gamma function, K(−) — Macdonald function, σ 2

ϕ —
dispersion of phase fluctuations on the screen, 1z —
thickness of turbulent layer replaced with a phase screen,

C2
n = const. For the vertical path modeled by a combination

of phase screens, we use in the formula (7)
hmax
∫

h0

C2
n(ξ)dξ

instead of C2
n1z . The structural function of the phase was

calculated using equation

Dϕ(r) = 2
(

Bϕ(0) − Bϕ(r)
)

. (8)

In the computational model the turbulent path was

replaced with a chain of M phase screens, δ-correlated

along z direction [29,30]. The structural function of the

phase for the chain of screens was calculated as a sum of

structural functions of individual screens i. e.

Dnum
ϕ (r) =

M
∑

i=1

Dnum
i (r).

Since the used model complies with the conditions of

locally homogeneous and isotropic turbulence, calculation

of Dnum
i (r) on a grid was carried out along one identified

direction on ith phase screen using a correlation function

calculated in the grid nodes:

Bnum
i (l) =

1

(N − l)

N−l
∑

m=1

ϕ̃i (m, N/2)ϕ̃∗

i (m + l, N/2), (9)

where ϕ̃i (m, n) — random implementation of the complex

phase field [28], N — even number of computational grid

nodes, l = 0, . . . , N−1.

In the spectral method [29] the random phase field is

formed using filtration of the Gaussian pseudorandom field,

and the transfer function of the filter depends on the spatial

spectrum of phase fluctuations. This method makes it

possible to form phase screens with L0 ≤ A/2, where A —
transverse size of the countable domain. In the calculations

A = 5.12m, which makes it possible to correctly model

phase distortions with L0 up to 2.56m. Minimum size

of distortions l0 ≈ 2s [29] is equal to 5mm, where s —
computational grid pitch.

To model large-scale distortions at L0 > A/2 and maintain

the size of the countable domain, additionally the subhar-

monics method was used [28,31]. The substance of this

method consists in subsequent addition of spatial harmonics

with the period exceeding the size of the countable domain

into the spectrum of phase fluctuations. This procedure

is carried out by serial (iteration) densification of the

computational grid nodes in the spectral plane (1κx , 1κy)
in the vicinity of zero harmonic. In accordance with [31] on
each jth iteration, additional 32 harmonics are added to the

phase spectrum with pitch 1κx/3
j and 1κy/3

j , which are

calculated in the rectangular area of the spectral space lim-

ited by points with coordinates (±1κx/3
j−1,±1κy/3

j−1),
j = 1, 2, . . . , J . Therefore, accuracy of reproduction of

the low-frequency part of the phase spectrum increases by

increasing the number of iterations J . The resulting phase

field is found in the form of the sum of its high frequency

part produced by spectral method, and low frequency part

generated with subharmonics. The structural function of the

phase on jth iteration is a sum of structural functions of the

high frequency part of the phase and its low frequency part

to the jth iteration inclusive.

Fig. 2 presents structural functions of the phase calculated

at different values L0. If L0 increases, the absolute values

of function Dϕ(r) increase. As follows from Fig. 2, a,

the structural function of the phase on the grid lattice is

indeed close to the analytical one at L0 = A/2 = 2.56m.

When only the spectral method is used, the error of the

modeled structural function of the phase increases with

increase of L0 — on the receiving aperture it reaches 2,

37, 44 and 56% at L0, equal to 2.56, 20, 40 and 1000m

accordingly. With increase of the number of subharmonic

levels the calculated structural function practically matches

the analytical one, which confirms adequate modeling of

the turbulent field of the refraction index fluctuations. It

should also be noted that the need for accounting of

finiteness L0 increases with the increase of the telescope

receiving aperture.

Therefore, the phase screens formed with the help of

a combination of the spectral method with the method

of subharmonics make it possible to build a numerical

turbulence model taking into account the effect of large

scale spatial inhomogeneities exceeding the size of the

countable domain at the nature of the beam propagation
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Figure 2. Analytical (1) and calculated structural functions of the phase obtained by the spectral method (2) and with additional use of

the subharmonic method at J = 1 (3), 2 (4), 4 (5) for L0, equal to 2.56 (a), 20 (b), 40 (c), 1000m (d).

in the atmosphere. Below this model was used to present

a vertical turbulent path with a chain of phase screens that

were generated by the above method.

3. Results of numerical simulation

Fig. 3 presents calculated distributions of radiation in-

tensity INF(x/D, y/D) from stars 1 and 2 in the near

field on the receiving round aperture in one realization of

turbulent atmosphere at L0 = 20m. Fig 4 shows images

of stars, i. e. distributions of their radiation intensity in

the far field IFF(θx , θy ), displaced by angle +5 arcsec

and −5 arcsec from the axis in direction x . Values of

intensity INF and IFF are normalized by the corresponding

maximum values IvacNF and IvacFF in case of beam passage

in vacuum. Distributions INF(x/D, y/D) and IFF(θx , θy )
have a clearly expressed heterogeneous structure, besides,

it is different for two paths. This already indicates

anisoplanatism of paths, at least by high-order aberra-

tions.

The image quality in the far field specifies effect of turbu-

lence on radiation, the spot size substantially exceeds the

diffraction size θdif = 0.28 arcsec, where θdif = 2.44λ/D.

In Kolmogorov turbulence model the angular full-width at

half maximum of the star image θFWHM under long-term ex-

posure is related to Fried radius as θFWHM = 0.98λ/r0 [32].
Using this formula, let us assess the radius of atmosphere

coherence ρ0 (analog of parameter r0 at finite L0) in case

of Karman model. Long-term exposure was simulated

by averaging of 100 star images corresponding to various

realizations of the turbulent paths. In the calculations it was

obtained that ρ0 = 7.4 cm at L0 = 20m, i. e. finiteness of

the external turbulence scale increases the coherence radius

(remember that ρ0 = r0 = 5.9 cm at L0 = ∞). Dependence
ρ0(L0) will be presented below.

Fig. 5 shows distribution of radiation phase in near field

from each star and their difference in this realization of

Technical Physics, 2024, Vol. 69, No. 6
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atmosphere (tilts of optical axes from the vertical line

by ±5 arcsec are not taken into account). Unwrapping

of the phase cleared its surges at 2π [33]. With the

substantially heterogeneous pattern of intensity in Fig. 3

the phase distribution is regular (in some areas of the

phase surface small artifacts have remained, which do not

complicate the pattern perception as a whole).

For the phase surface of radiation of stars 1 and 2

the parameter PV (peak-to-valley), i. e. the maximum

phase difference on the aperture is equal to PV = 33.9

and 24.2 rad accordingly, and for phase difference —
PV = 21.6 rad. Even though phase surfaces of radiation

from both stars in general remind each other, their difference

gives a comparable value PV . This already indicates a

certain degree of isoplanatism by low-order aberrations and

its absence in the entire totality of aberrations, which by

impact at image quality is similar to the case of incomplete

phase conjugation [34,35].

Let us now imagine that star 2, the clear image of which

we must obtain, has such small star value, that it is not

possible to measure the wavefront of its radiation — a

problem of weak signal so well known in astronomy (small

size of space debris or low stellar brightness). Then let

us build the image of star 2 in the far field at phase

correction of its radiation, adding with the help of the

imaginary adaptive mirror a phase screen conjugated with

the phase of radiation from bright star 1. In this case

after passage of the adaptive mirror the radiation of star 2

will acquire a differential phase front (Fig. 5, c). Image of

star 2 is shown in Fig. 6, a. Its complete angular size by

energy level 95% after averaging is equal to 6 arcsec, which

approximately coincides with the case without correction

(Fig. 4, b). This is the manifestation of anisoplanatism by

all aberrations, i. e. use of star 1 as a reference source for

correction of phase distortions from star 2 is absolutely

inefficient.

Since it is not possible to restore the wavefront of

radiation of star 2 due to its low brightness, a sodium LGS

may be
”
ignited“ in its direction. But LGS is formed with

the help of a laser located on the Earth, therefore, a problem

of uncertainty of LGS angular coordinate arises (i. e. global

tilt of wavefront) [9–11]. Therefore, to control the adaptive

mirror, we use high-order (except for wavefront tilt)

aberrations from LGS radiation, and tilt — from radiation of

the bright neighboring star 1, remembering a certain degree

of isoplanatism of paths by lower aberrations. Fig 6, b shows

image of star 2 at phase correction by high-order aberrations

of LGS (in neglection of cone effect [4]) and tilts of the

wavefront from star 1. Here the image is ideal, but it is

deviated from the axis by the difference of two tilts. Then

let us find the error in detection of the angular coordinate

of star 2 by this method.

Tilt of the star wavefront may be identified by two

methods: by center of masses of the image in the far

field and phase decomposition in the near field by Zernike

polynomials [36,37]. Fig 7 shows values of Gradient- and

Zernike-tilt (G- and Z-tilt) of the wavefront of star 1 along x -
and y - axis and their difference for 100 random realizations

of atmosphere turbulence. Coordinates of G-tilt — angular

coordinates (Gx , Gy ) of center of masses of the star image,

coordinates of Z-tilt (Zx , Zy ) — angular coordinates of two

tilts when the wavefront of radiation is decomposed on

the basis of Zernike polynomials. You can see that the

values of tilts of two types are close to each other, and the

amplitude of their difference, accordingly, is substantially

lower than the tilt amplitude. In the calculations it was

obtained that RMS (root-mean-square deviation) of full

(along x - and y - axes) G-tilt is 1.08 times less than RMS of

Z-tilt — 0.4 arcsec vs 0.43 arcsec (for Kolmogorov model

of turbulence with infinite L0 the difference in values RMS
is 1.07 times [38]).
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Angular coordinates of G-tilt of wavefront from two

stars for 100 random realizations of atmosphere turbulence

are shown in Fig. 8, a, b. Hereinafter indices 1 and 2

indicate ratio of the parameter to star 1 and 2, accordingly.

A dash indicates a level corresponding to the diffraction

half-angle 0.5θdif = 0.14 arcsec. Quite high correlation of

wavefront tilts is seen from two stars both in direction x ,
and by y . In general the amplitude of tilt fluctuations does

not exceed 2θdif. From Fig. 8, c, d you can see that the

amplitude of tilt difference fluctuations does not exceed

θdif in direction of x and 0.5θdif by y , which serves as

an approximate level of angular error in definition of the

coordinate of star 2.

Fig. 9, a shows RMS of tilts of wavefront σx1, σx2

and σy1, σy2 along x - and y -axes for two stars depending

on L0. Calculated dependences σx1(L0), σy1(L0), σx2(L0),
σy2(L0) grow monotonously with growth of L0 and, besides,

σx1 ≈ σy1, σx2 ≈ σy2 with accuracy of not worse than 5% at

specified L0, which is compliant with the ideas of turbulence

isotropism.

Fig. 9, a also shows approximated analytical depen-

dences [38,39]. In [38] there is an analytical expression

given to assess RMS of tilt of wavefront at η = D/L0 ≪ 1:

T = TS ≈
[

6.08µ0

D1/3
(1− 1.42η1/3 + 3.70η2 − 4.01η7/3

+ 4.21η4 − 4.00η13/3)

]1/2

,

(10)
where

µ0 =

∞
∫

0

C2
n(ξ)dξ,

integration is carried out along a vertical path. Expres-

sion (10) is derived in neglecting the diffraction and under

the condition that l0 = 0, and L0 does not depend on z .
In [39] another formula is proposed to assess RMS of

angular deviation of star image in the focal plane of the

telescope:

T = TL ≈
[

3.23R−1/3r−5/3
0 k−2

(

1− 2−1/6(κ∗0 R)1/3
)

]1/2

,

r0 ≈
(

k2

∞
∫

0

C2
n(ξ)dξ

)−3/5

,

(κ∗0 )−1 =

(

∞
∫

0

C2
n(ξ)κ

1/3
0 dξ

/

∞
∫

0

C2
n(ξ)dξ

)−3

, (11)

where R — effective radius of Gaussian aperture,

κ∗0 = 2π/L∗

0 , L∗

0 — effective outer scale of turbulence. Ex-

pression (11) is derived under the condition (κ∗0 R)−1 ≫ 1

for the exponential model of spectral density of the

refraction index [39], which is somewhat different from the

widely available von Karman spectrum:

8n(κ⊥, κz )=0.033C2
n(κ

2
⊥

+κ2z )
−11/6

[

1−exp

(

κ2
⊥

+ κ2z

κ20

)]

.

In our case L∗

0 = L0, R = 50 cm. Owing to isotropism

of turbulence, RMS of wavefront tilt along two mutually

perpendicular directions is σS = TS/
√
2 and σL = TL/

√
2.

Taking into account the fact that formulae (10) and (11)
were derived with some simplifying assumptions, you may

report the qualitative agreement of calculated and analytical

dependences. You can see that with growth of L0, as in the
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Figure 10. Radius of atmosphere coherence (a) and Strehl number of radiation from the star under long-term exposure (b) at different

values L0. Squares — calculated values, circles — analytical estimate, horizontal line — limit analytical value at L0 = ∞.

Kolmogorov turbulence theory, the estimated dependences

reach the plateau.

Fig. 9, b presents dependences of RMS of G-tilts differ-

ence for two stars on L0. Analytical expression to assess

RMS difference of tilts along x - and y -axes — σ1x and σ1y

may be presented as follows [4]:
[

σ1x

σ1y

]

=

[

σ1x0

σ1y0

]

(1− 20.6η2 + 27.4η7/3 + . . .)1/2, (12)

where σ1x0 and σ1y0 — corresponding values at L0 = ∞.

Mathematical expressions for σ1x0 and σ1y0 have a rather

bulky appearance and are not provided here, you may

find them in [4]. Their assessment yields σ1x0 ≈ 0.2 arcsec

and σ1y0 ≈ 0.13 arcsec. Dependences σ1x(L0) and σ1y(L0)
grow monotonously to L0 = 10m and do not change

further (at the same time dependences σx1(L0), σy1(L0)
in Fig. 9, a continue growing monotonously approximately

to L0 = 2000m). The progress of estimated curves

in Fig. 9, b is qualitatively compliant with the analytical

dependence (12). At L0 > 10m RMS the differences

of wavefront tilts are 1.8 times higher along the axis

of angular separation of stars x , vs along the perpen-

dicular direction y , which is compliant with theoretical

ideas [38]. Our calculated values are lower than the

assessed ones approximately by 20−30%. RMS of

differential tilt σ1 =
√

σ 2
1x + σ 2

1y is approximately equal

to 0.2 arcsec, which is 1.4 times lower than the full

angle of diffraction divergence on the aperture. Pa-

rameter σ1 — that is the RMS of tilts of wavefront

from star 2 after their adaptive phase correction using tilts

from star 1.

Fig. 10, a shows calculated dependence of coherence

radius of the vertical atmospheric path on the value of the

outer scale of turbulence. The calculations used formula

ρ0 = 0.98λ/θFWHM .

You can see that as L0 grows, dependence ρ0(L0) tends

to the value of Fried parameter r0, calculated using for-

mula (1) with account of dependence C2
n(z ) (horizontal line

in Fig. 10, a). Fig. 10, b shows calculated and assessed

dependence of Strehl number St [40] of star radiation.

Under long-term exposure St ≈
(

1 + (D/ρ0)
2
)−1

[41]. Data
to build analytical dependence are taken from Fig. 10, a. The

limit value of parameter St (horizontal line in Fig. 10, b) is

calculated at ρ0 = r0.

Conclusion

In the paper, within the quasi-optical computational

model, calculations were completed on radiation propa-

gation from two natural stars via turbulent atmosphere

to the telescope located on the Earth, with account of

finiteness of the external turbulence scale L0. The ratio

of diameter of the telescope receiving aperture D to Fried

parameter — around 17, which indicates difficult conditions

for astronomic observations, if they are carried out without

adaptive optics. The angular distance between stars is equal

to 10 arcsec, which substantially exceeds the isoplanatic

angle with account of all optical aberrations of the path

(0.6 arcsec), and aberrations only for the
”
tilt“ (2.13 arcsec).

Verification of the computational model was carried out by

comparison of calculated and analytical structural functions

of the radiation phase.

The calculations analyzed amplitude-phase characteristics

of radiation from two stars in the near and far field, and

modelled phase correction of radiation with account of

anisoplanatism. It was demonstrated that use of radiation

of star 1 as a reference for correction of phase distortions in

radiation of star 2 and building of its image is not effective,

which indicates the need of
”
ignition“ of LGS in direction

of star 2 for correction of higher optical aberrations. In this

case, taking into account the uncertainty of tilt of LGS

radiation wavefront, you may use information in the tilt of

star 1 radiation wavefront (by center of masses of the image
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or from decomposition by Zernike polynomials). Then

you can obtain an image of star 2 of practically diffraction

quality, but its angular coordinate is displaced for difference

of tilts from stars 1 and 2. The calculated dependence

RMS is found for each of tilts and their difference from

the outer turbulence scale L0. Value RMS of tilts and

their difference monotonously increases as L0 increases and

reaches the plateau at L0 ≫ D, as predicted by the theory.

Calculated values RMS of tilt difference are lower than

analytical estimates by 20−30%. It is interesting that the

dependence RMS of tilt difference on L0 reaches the plateau

much earlier that the similar dependence for each individual

tilt. In calculations of RMS of tilt difference is approximately

equal to 0.2 arcsec at L0 > 20m, which is 1.4 times lower

than the full angle of diffraction divergence.

To conclude, note that the developed computational

model that was approved and confirms the results of

approximated analytical models, may be used to determine

the qualitative impact of anisoplanatism during astronomic

observations using LGS technique and adaptive optics at

different angular distance between the studied object and

different reference sources in the wide range of turbulence

conditions, including its non-Kolmogorov features.
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