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1. Introduction

There are various possibilities for generating a periodic

sequence of pulses with a spectrum in the form of a comb

of equidistant discrete lines in the existing numerous lasers

of classes A, B, C, where the photon lifetime TE in the

cavity exceeds the phase relaxation time T2 of the active

medium polarization (i. e., the density of optical dipole

moments of active centers) [1–13]. Such pulse sequences

and spectral combs are obtained under a continuous-wave

(CW) pumping, for example, due to synchronization of

equidistant modes in a laser with a high-quality cavity and a

wide spectral gain line of the active medium. However, an

equidistant spectrum comb and periodic pulse generation

can also be obtained in a laser with a low-Q cavity and

a narrow, homogeneously broadened spectral line of the

active medium using a nonlinear self-modulation of one

laser mode in the absence of lasing of other cavity modes.

This statement is demonstrated in the paper by numerical

solving the Maxwell-Bloch equations for a laser of the

class D [1,14,15] with a low-Q asymmetric Fabry-Perot

cavity, in which TE ≪ T2 and in a wide range of parameters,

a single-mode lasing of a periodic sequence of superra-

diance pulses under CW pumping is possible. Such an

operation is owing to (i) the dissipative (radiative) instability
of polarization waves that compose the laser polariton

mode and have negative energy, and (ii) the dynamic

nonlinearity of collective spontaneous Dicke superradiance

that has an induced character in this case [16,17]. These

factors, on the one hand, determine the instability of

stationary (quasi-monochromatic) single-mode oscillations

of a superradiant laser, and on the other hand, they allow

the lasing of an irregular and even chaotic sequence of

superradiance pulses with a quasi-continuous spectrum. The

complex dynamics is possible under a strong CW pumping,

many times greater than the laser threshold, in different

dense (spatially and spectrally) ensembles of active centers,

including semiconductor structures with impurities, excitons

or electrons and holes in magnetized quantum wells (cf., for
example, [10,18–31]).

The various lasing features, related mainly to the periodic

operation we are interested in, are discussed in the following

Secs. 4, 5, 6 for superradiant lasers with relatively moderate,

strong and weak cavity asymmetry, respectively. The

simplest laser model used and the basic requirements for its

parameters, including the asymmetry of the cavity, as well

as a qualitative description of the mechanism of periodic

emission of identical coherent pulses under CW pumping

are presented in the introductory Secs. 2 and 3. Main

results and some open questions about the dynamics of

superradiant lasers are given in Conclusion (section 6).

2. Superradiant laser with low-Q
Fabry-Perot cavity

Despite the fact that the feasibility of lasing of a periodic

sequence of superradiance pulses under CW incoherent

pumping has already been discussed and demonstrated

numerically in our works for rather complex combined

cavities and active media with inhomogeneous broadening

of the spectral line (see [13,14,32]), the specified periodic

lasing has not been studied yet in the most popular

model of a laser with a homogeneously broadened two-

level active medium which is homogeneously distributed

in an elementary Fabry-Perot cavity. This one-dimensional
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model is based on the semi-classical Maxwell−Bloch equa-

tions [14,15,33,34] for smoothly varying complex ampli-

tudes of counterpropagating waves of the electromagnetic

field and polarization of a medium consisting of 2-level

centers with an optical dipole moment d at the transition

frequency ω0,

E = Re
[

A+(z , t) exp(ik0z − iω0t)

+ A−(z , t) exp(−ik0z − iω0t)
]

/
√
ε0, (1)

P = Re
[

P+(z , t) exp(ik0z − iω0t)

+ P−(z , t) exp(−ik0z ) − iω0t)
]√

ε0, (2)

and for the inversion of populations of their energy levels, in

which a half-wavelength grating nz (z , t) (with spatial period

λ0/2 = π/k0 along the cavity axis z ) separated from a

smoothly inhomogeneous background n(z , t) (both defined

per one active center):

D(z , t) = n(z , t) + Im
[

nz (z , t) exp(2ik0z )
]

. (3)

For certainty, the wavenumber k0 = ω0c−1√ε0 is as-

sumed to coincide with the real part of the wavenumber

of the working mode (and its frequency coincides with

the transition frequency ω0) of the Fabry-Perot cavity with

a length B and mirrors having reflector factors (in field

amplitude) of R2 < R1 and located at points z = ±B/2,

respectively (c is the speed of light in vacuum, ε0 is a

dielectric permittivity of the active-medium matrix). Non-

linear dynamics of the considered physical quantities n, nz ,

p± = P±/(dN0),

α± = a±

νc

ω0

=
A±

2πdN0

≡ dA±

~νcε0
(4)

obeys the well-known shortened Maxwell–Bloch equations

presented in [15,34], as well as in [14], where the complex

valued functions α± are replaced by a± (N0 is a concentra-

tion of active centers, ~ Planck’s constant):

[

∂

∂τ
± ∂

∂ζ

]

α± = i p±,

[

∂

∂τ
+ Ŵ2

]

p± = −inα± ∓ n1,∗
z

2
α∓,

[

∂

∂τ
+ Ŵ1

]

(n − np) = Im (α∗
+ p+ + α∗

−p−),

[

∂

∂τ
+ Ŵ1

]

nz = α∗
−p+ − α+ p∗

−. (5)

Here, the symbol ∗ indicates a complex conjugation,

which is present in the second equation only for wave

amplitudes with lower signs. The pumping level,

0 < np ≤ 1, and the rates of incoherent relaxation of

population inversion and polarization of the active medium

Ŵ1,2 = 1/(T1,2νc) are also used. The decay rate of

the field ŴE = 1/(TEνc) of a cavity mode is set by

the boundary conditions α+(−L/2) = R1α−(−L/2) and

α−(L/2) = R2α+(L/2) (and possible ohmic losses, which

are omitted for simplicity in the first equation):

ŴE = − ln
√

R1R2

L
. (6)

The most important parameters are the cooperative length

Bc = c/νc
√
ε0 and cooperative frequency

νc =

√

2πd2ω0N0

ε0~
, (7)

which are used for normalization of the spatial coordinate

ζ = z/Bc , laser length L = B/Bc , time τ = νct and fre-

quency detuning in the spectra 1 = (ω − ω0)/νc . Then the

following characteristic values of incoherent relaxation rates

of polarization and population inversion Ŵ2 = 2Ŵ1 = 0.02,

as well as the laser length L = 2 and four sets of mir-

ror reflector factors were selected in most calculations:

(R1, R2) = (0.8, 0.5), (0.9, 0.3), (0.9, 0.1), (0.5, 0.4), for

which the field decay rate is ŴE = 0.23, 0.33, 0.6, 0.4,

respectively.

The equations (5) were solved for various laser para-

meters and levels of homogeneous CW pumping np using

the grid method and the modified Runge−Kutta method

of the 4th order. Only the noise amplitudes of the

polarization waves of the active medium were set finite,

|p±| ∼ 10−4, initial moment of time, and the electric field

and the population-inversion grating were considered zero

for simplicity: α± = 0, nz = 0.

Non-stationary lasing takes place if the pumping level np

exceeds the so-called second laser threshold, which can

be significantly higher than the first one, n0 = Ŵ2ŴE , that

corresponds to the appearance of a positive growth rate in

the linearized equations (5) for the resonant polariton mode

with the real frequency ω0

Ŵ =

√

n̄ +

(

ŴE − Ŵ2

2

)2

− ŴE + Ŵ2

2
(8)

(normalized, as said, to the cooperative frequency (7)). For
generality in this expression, in order to use the growth

rate of the laser mode in further estimates in the presence

of an inhomogeneous population inversion n(ζ ), its spatial

average value n̄ is given instead of the homogeneous

pumping level np considered here. According to numerous

simulations [15,33–35], the nonstationarity of the resonant

polariton mode is primarily originated from the excitation

of neighboring modes (polariton or electromagnetic) if the

Fabry-Perot cavity is sufficiently symmetrical, namely for

the selected characteristic laser parameters, if the relative

difference in the reflector factors of the mirrors is less than

or of the order of 10%. We are interested in this paper

in another mechanism of self-modulation of the resonant
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mode, associated with its own superradiant dynamics and

in its pure form realized in more asymmetric cavities. It

is described below and allows obtaining strictly periodic

pulses of radiation at a not too high pumping level, for

which other factors that violate the periodicity of lasing

do not yet take place. They are attributable to the strong

inhomogeneity of population inversion or the excitation

of neighboring modes, which is inevitable under extreme

pumping even in a very asymmetric cavity.

3. The mechanism of periodic lasing
of superradiance pulses

To generate a pulse of mode superradiance in the

considered laser of class D with ŴE > Ŵ2, it is actually

required to achieve the inequality Ŵ > Ŵ2, i. e., approxi-

mately n̄ > 2Ŵ2(ŴE + Ŵ2) ≈ 2n0 according to (8). Its can

be maintained for relatively short time, during a time 1τ

less than or of the order of Ŵ−1
1 , but it should be sufficient

for the pumping to have time to create a reserve of

population inversion above the threshold value n0 and

ensure the development of dissipative, radiative instability

of the polarization waves with negative energy [14,16,17].
In this case, the duration of the resulting pulse of the mode

superradiance can be greater than or of the order of the

photon lifetime in the cavity TE , but it should be less than

or of the order of the time of phase (incoherent) relaxation

of polarization T2.

The latter condition is known [15,16,36] to be necessary

in the initial value problem of arising of collective sponta-

neous Dicke superradiance (get started with quantum or

thermal field and polarization noises), and is essentially

required for the considered periodic mode superradiance,

which actually is an induced collective Dicke process. The

only difference is that each subsequent pulse of this radiation

does not originate spontaneously from noise, but is induced

in a regular manner from the remnants of a coherent field

(and polarization consistent with it) that have not yet leaved

the low-Q cavity since the formation of the previous pulse.

Therefore, self-modulation of the resonant polariton mode

is attributable to the strong nonlinearity of the collective

Dicke superradiance in these conditions, i. e., a sharp reset

of the population inversion (locally, especially near mirrors,

to negative values during the time interval of the order of

2/max[Ŵνc ] or several TE) immediately after the generation

and emission of the superradiance pulse.

The pulse repetition period in the generated sequence is

mainly determined by the time of incoherent relaxation of

population inversion T1, which determines the characteristic

time of the inversion increase in a partially deactivated

medium under the action of CW pumping to an average

level n̄, significantly exceeding the second laser threshold,

i. e. up to ∼ 2n0 and higher. The duration of the super-

radiance pulse is less than or of the order of time T2 and

cannot be less than the inverse cooperative frequency ν−1
c ,

and actually less than time TE at L ∼ 1. In addition, the rate

of incoherent relaxation of population inversion is always

less than or of the order of the rate of phase relaxation

of polarization in the two-level medium. Therefore, the

described mechanism of self-modulation of the laser mode

and, consequently, the formation of an equidistant comb

of discrete spectral lines assumes the fulfillment of the

inequalities Ŵ1 . Ŵ2 ≪ 1. We perform calculations for

Ŵ1 = 0.01 at Ŵ2 = 0.02 and Ŵ2 = 0.1.

At the same time, the field decay rate is close to the

value 0.3, i. e., ŴE ∼ 0.3, and is practically determined by

the selected cavity length L = 2, since the reflector factors

of the mirrors stand under the sign of the logarithm in

the expression (6) and results in a factor of the order

of 1 for adequate low-Q cavities. (It is difficult to

achieve the threshold of lasing, especially the second laser

threshold, for much shorter cavities, and the laser dynamics

is irregular and corresponds to a quasi-continuous radiation

spectrum for very long cavities due to the reabsorption of

superradiance pulses.) As can be seen from the simulations

provided below, the inverse duty cycle of the outcoming

pulse sequence, and therefore the number of significant

discrete lines in the spectrum turns out to be of the order

of 10.

The range of pumping levels that ensure the implementa-

tion of this unique lasing and the nature of laser operation

outside this range significantly depend on the asymmetry of

the Fabry-Perot cavity. Three typical options are provided

below.

4. Moderate asymmetry of the cavity

For a laser with mirror reflection factors of R1 = 0.8 and

R2 = 0.5, a periodic sequence of superradiance pulses is

generated at the pumping level of np ∼ 0.1. According to

Figure 1, with np = 0.1, the asymmetry factor of the laser

radiation

r = max

[

(1− R2
2)|α+(ζ = L/2)|2

(1− R2
1)|α−(ζ = −L/2)|2

]

, (9)

that is, the time-average ratio of the intensities of radiation

from opposite mirrors in the steady lasing, is equal to

r = 3.5 and is only 5% higher than this ratio for the cavity

mode

r0 =
R1(1− R2

2)

R2(1− R2
1)
. (10)

The time-average level of population inversion

〈n̄〉τ = 0.034 exceeds the threshold n0 = 0.0046 almost

8 times and exceeds even stronger the average amplitude of

the population-inversion grating nz , which does not play a

noticeable role, although it can reach a value of the order

of 0.1 at particular time moments during superradiant lasing.

The average (over the laser) population inversion n̄ changes

periodically, gradually increasing from a minimum value of

0.014 to a maximum of 0.05 and sharply decreasing again

to a minimum. The decay time is slightly longer than the

pulse duration τi ≈ 10, which is determined by the width of
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Figure 1. Periodic superradiance in a laser of length L = 2

with mirror reflection factors R1 = 0.8 and R2 = 0.5 at the

pumping level np = 0.1 and polarization relaxation rate Ŵ2 = 0.02.

Oscillograms of the intensities of the outcoming radiation (a) and

the amplitude spectra of the fields (b) at the opposite ends of

the laser ζ = L/2 (light line 1) and ζ = −L/2 (black 2). The

oscillogram of the average population inversion (dotted line 3,

corresponding to the ordinate axis on the right) is shown on the

plot (a).

its intensity profile at half the maximum and approximately

equal to twice the inverse growth rate of the polariton

mode (8) Ŵm ≈ 0.12 at the maximum population-inversion

stage. The pulse repetition period is τs ≈ 90, i. e., it is a

little less than the time Ŵ−1
1 = 100, and determines the step

of the spectrum comb 2π/τs ≈ 0.07.

A stationary single-frequency lasing of a polariton mode

takes place at the pumping level np ∼ 0.01 that does not

significantly exceeds the threshold n0, with an average

population inversion slightly different from the threshold n0

as well as with a very weak population-inversion grating and

a radiation asymmetry factor r = 3.62, close to the
”
cold“

value r0 = 3.33. A stationary lasing is also realized at a

high pumping level np ∼ 0.5, however, now the polariton

mode is significantly changed by a strong asymmetric

self-consistent population-inversion grating nz , created by

counterpropagating waves and having an amplitude of

∼ 0.1. As a result, the grating and the radiation asymmetry

factor determined by it radically depend on the pumping

level, which, at the same time has almost no effect on

the average (over the laser) population inversion. So,

for np = 0.5 and 1, we get r = 48.4 and 97.7, whereas

n̄ = 0.04 and 0.046, respectively.

5. Strong asymmetry of the cavity

In a more asymmetric cavity with R1 = 0.9 and R2 = 0.3,

stationary lasing of the polariton mode is realized only

at the pumping level np ∼ 0.01, not much exceeding

the threshold n0 = 0.0066, and then again the average

population inversion n̄ differs slightly from the threshold n0,

the population-inversion grating nz is weak and the radiation

asymmetry factor r is close to the
”
cold“ value r0 = 14.3.

Periodic lasing of superradiance pulses with an equidis-

tant comb of the spectrum still occurs in a wide range of

pumping levels at np ∼ 0.1 and the qualitative conclusions

of the previous section remain. Namely, r ∼ r0; the value of
〈ñ〉τ exceeds the threshold n0 several times; the population-

inversion grating is insignificant, although it sometimes has

an amplitude of |nz | ∼ 0.1; the average laser population

inversion n̄ periodically changes in magnitude in several

times, sharply decreasing to almost zero during the emission

of pulses; the time of this decrease is slightly longer than

the duration of a pulse, determined by the doubled inverse

growth rate of the polariton mode (8) at the moments when

population inversion maxima are reached: τi ≈ 2Ŵ−1
m ∼ 15.

As usual, the outgoing superradiance pulse leaves behind

an area of an uninverted medium, where n(ζ ) < 0, in the

vicinity of the output mirror for a short time (fractions of

time T1).
Comparing these lasing features at np = 0.1 and 0.25, we

have r = 15.3 and 12.1, 〈n̄〉τ = 0.03 and 0.047, τs = 100

and 120, τi = 20 and 12, respectively. Thus, multiplication

of the pumping level by 2.5 times increases significantly,

but not very strongly the time-average population inversion

(by 50%) and the period of the outcoming pulse sequence

(by 20%), and therefore makes the spectral comb more

frequent: from 2π/τs = 0.06 to 0.05. In addition, the

width of the spectrum comb increases by ∼ 30% (from
2π/τi = 0.32 to 0.5), since superradiance pulses become

a third shorter with the indicated multiplication of the

pumping level; at the same time, a pulse of almost half the

intensity appears between two neighboring identical large

pulses (large and small pulses are emitted in the opposite

phase through the right and left mirrors of the cavity).

A very irregular (possibly chaotic) lasing of mode-

superradiant pulses now takes place at a high level of

pumping np ∼ 0.5, instead of stationary generation. At

np = 1, according to Figure 2a, random powerful short

pulses are emitted from a poorly reflecting mirror (line 1),
np = 1, and less powerful smoothed non-stationary radiation

(line 2) comes out in the opposite direction, while the

radiation asymmetry factor r = 4.6 is three times less

Semiconductors, 2024, Vol. 58, No. 4
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Figure 2. Irregular superradiance pulses in a laser of length

L = 2 with mirror reflection factors R1 = 0.9 and R2 = 0.3 at the

pumping level np = 1 and polarization relaxation rate Ŵ2 = 0.02.

Oscillograms of the intensities of the outcoming radiation (a) and

the amplitude spectra of the fields (b) at the opposite ends of the

laser ζ = L/2 (light line 1) and ζ = −L/2 (black 2).

than the
”
cold“ one r0 and the time-average population

inversion 〈n̄〉τ = 0.11 is 17 times higher than the threshold

n0. Approximately the same dynamics is observed at

np = 0.5 with r = 5.8 and 〈n̄〉τ = 0.094, accompanied by

strong local oscillations of the smoothly inhomogeneous

component and the amplitude of the population-inversion

grating within the ranges −0.1−0.2 and 0.1−0.4 respec-

tively (such oscillations are 1.5 times stronger at np = 1).
However, in both cases, the spectrum is continuous with two

well-defined smoothed peaks at frequencies around ±0.1.

In the first case, it is 1.5 times wider and has a third central

peak, which corresponds to a slowly changing component

of radiation and is better represented at the output of a well-

reflecting mirror than the opposite poorly reflecting one.

In a laser with an even greater, multiple difference of

the reflection factors of the mirrors R1 = 0.9 and R2 = 0.1,

where ŴE = 0.6, i. e., the cavity has a very low-Q stationary

lasing is realized only for the pumping level np exceeding

the threshold n0 = 0.012 by no more than 5 times. Under

these conditions, the average population inversion does not

significantly exceed the threshold, n̄ ≤ 0.02, but there is

already a fairly significant population-inversion grating at

np = 0.06 and even 0.05, increasing the radiation asymme-

try factor from the
”
cold“ value r0 = 47 to the values 197

and 157, respectively.

A strictly periodic lasing of superradiance pulses takes

place in the rest of the pumping range, qualitatively

demonstrating the same properties indicated above: a) well-

formed short pulses for which the radiation asymmetry

factor is suppresed, r . r0; b) a spectral comb containing

about 10 significant equidistant lines and having a width of

the order of πŴm. The width of the comb monotonously

triples from ∼ 0.4 to 1.2, and its step 2π/τs increases

slightly less from ∼ 0.033 to ∼ 0.09 with an increase of

the pumping level np from 0.07 to 1.

The corresponding decrease of the pulse repetition period

is accompanied by only a slight change of their shape in the

pumping range of 0.07−0.1, and is complemented in the

range of 0.2−1 by the appearance of significant intermediate

pulses with an intensity of the order of 10−50% relative

to the most powerful and short pulses, and the radiation

profiles from opposite mirrors significantly differ in this

case. The average population inversion 〈n̄〉τ increases by

only 5% from 0.027 to 0.0283 in the first range, and the

radiation asymmetry factor drops by about 30% from 68

to 49, remaining above the
”
cold“one: r > r0. These values

vary much more significantly in the second range — by

2.5 times from 0.039 to 0.098 and by 4 times from 28 to 7.3

(r < r0), respectively.

6. Weak asymmetry of the cavity

In a more symmetrical cavity with R1 = 0.5 and

R2 = 0.4, i. e., with a total of 20% difference of mirror

reflection factors, when r0 = 1.4, ŴE = 0.4 and n0 = 0.008,

superradiance pulses are not generated and, according to nu-

merical modeling, one stationary polariton mode is excited

for all pumping levels above the threshold. The population-

inversion grating associated with it is weak at np ∼ 0.01, the

radiation asymmetry factor r is small and differs little from

the
”
cold“value r0, and the average population inversion

n̄ is close to the threshold n0. The radiation asymmetry

factor increases almost 10 times from r = 2.8 and 6.3 to

12.6 and 25.8 with an increase of pumping from np = 0.1

and 0.25 to 0.5 and 1, and the average population inversion

changes only 1.5 times from n̄ = 0.027 and 0.037 to 0.044

and 0.05, respectively. A similar stationary lasing, already

noted in Secs. 4 and 5, allows for an analytical description

taking into account the key role of the population-inversion

grating, which will be done in a separate paper.

For the present work, it is essential that a strictly periodic

and quasi-periodic sequence of superradiance pulses will

be generated, respectively if, for example, the relaxation

Semiconductors, 2024, Vol. 58, No. 4
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Figure 3. Quasi-periodic superradiance in a laser of length

L = 2 with mirror reflection factors R1 = 0.5 and R2 = 0.4 at the

pumping level np = 1 and the polarization relaxation rate Ŵ2 = 0.1.

Oscillograms of the intensities of the outcoming radiation (a)
and the amplitude spectra of the fields (b) at the opposite ends

of the laser ζ = L/2 (light line 1) and ζ = −L/2 (black 2).
For comparison, the dashed lines show the oscillograms and

spectra at the ends of the laser ζ = L/2 (light line 3) and

ζ = −L/2 (black 4) for strongly asymmetric single-mode lasing

with the same parameters, except with the relaxation rate, reduced

by 5 times: Ŵ2 = 0.02. (A color version of the figure is provided

in the online version of the paper.)

rate of the polarization of the active medium is increased by

5 times at np = 0.5 and 1, i. e., taking Ŵ2 = 0.1 (thereby
changing the excess over the threshold n0 = Ŵ2ŴE). In

the first case, at np = 0.5, it has general properties already

been specified in the Secs. 4, 5 and shown in Figure 1,

and is characterized by the following numerical parameters:

τi ≈ 2Ŵ−1
m = 9, 2π/τi = 0.7, τs = 60, 2π/τs = 0.1, r = 1.6,

〈n̄〉τ = 0.15 > n0 = 0.04.

In the second case, at np = 1, there is a large number

of very weak spectral components that correspond to

significantly weaker and more variable superradiance pulses

following the same periodicity, but having a low-power

variable pedestal, as can be seen from Figure 3, in addition

to the discrete spectrum of the main equidistant comb,

which corresponds to the periodic sequence of almost

identical powerful superradiance pulses. In other words,

a very weak almost continuous component appears in

the spectrum at the pumping level np close to 1. The

quantitative parameters of the equidistant spectral comb

we are interested in and the corresponding
”
averaged“

superradiance pulses, of course, change very noticeably

with the considered twofold increase of pumping to

the level np = 1: τi ≈ 2Ŵ−1
m = 6, 2π/τi = 1.04, τs = 86,

2π/τs = 0.07, r = 1, 〈n̄〉τ = 0.18 > n0 = 0.04.

The simulation of the dynamics of an asymmetric-cavity

laser under CW pumping shows that the single-mode lasing

of periodic superradiance pulses, which gives a discrete

spectrum in the form of a comb, is possible if there is

significant (in several times), but not excessive (by orders

of magnitude) surpassing of the laser threshold n0 = Ŵ2ŴE .

It can be achieved by changing both the pumping level np

and the rates of phase relaxation of polarization Ŵ2 and the

decay of the field in the cavity (6) ŴE , in particular, due

to variations of its length L (at np > n0 and maintaining

the conditions of a class D laser, including the condition

for the rate of incoherent relaxation of population inversion

Ŵ1 . Ŵ2 ≪ 1). A single-mode stationary lasing takes place

in the case of insufficient threshold exceeding. When the

threshold n0 is excessively exceeded, the discrete radiation

spectrum is supplemented or replaced by a continuous

radiation spectrum, which is attributable to the reabsorp-

tion of superradiance pulses, the desynchronization of

inhomogeneous counterpropagating waves of the field and

polarization, and the irregular population-inversion grating

created by them inside an excessively long laser.

7. Conclusion

Thus, the spontaneous formation of a periodic sequence

of very short coherent superradiance pulses of a resonant

polariton mode is predicted and numerically studied for a

wide range of parameters of an asymmetric laser of class D

in the presence of CW incoherent pumping of an active

two-level medium with a homogeneous broadening of the

spectral line.

The analysis shows that the relaxation characteristics of

the active medium and the cavity, including the rate of inco-

herent relaxation of population inversion Ŵ1, the width of the

spectral line of the laser transition 2Ŵ2 (both homogeneous

and inhomogeneous) and the reflection factors of mirrors

R1,2 (as well as ohmic losses in the cavity) significantly af-

fect the properties of the predicted strictly periodic lasing of

superradiance pulses — their amplitude, duration, repetition

rate, mirror asymmetry of emission and the corresponding

parameters of the equidistant comb of the spectrum. This

unique single-mode highly unsteady behaviour is actually

an induced collective Dicke mode superradiance.
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Further study of this intriguing operation and determina-

tion of the range of all class D laser parameters (its length,
pumping level, etc.), allowing the implementation of the

resulting equidistant spectrum comb, are of interest both

for the fundamental physics of manyparticle systems with

radiation interaction and, possibly, for practical applications

of superradiant lasers with low-Q cavity. Attention needs

to be paid to the studies of the features of such a pulsed

superradiant lasing in case of CW pumping of more complex

active media, which are placed into more complicated

cavities, for example, in the presence of distributed feedback

of counterpropagating waves, phase-shifting mirrors and

frequency detuning of the cavity mode from the center of

the spectral line of the medium.
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