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Alternative phase functions in the modelling of coherent backscattering
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Modelling of the coherent backscattering effect based on the Bethe−Solpeter equation has been carried out when

anisotropy is taken into account using two different phase functions. It is found that with increasing anisotropy of

the single scattering indicatrix, calculations with the Rayleigh−Gans phase function lead to wider angular peaks of

coherent backscattering than calculations with the Henya−Greenstein phase function. Monte Carlo simulations of

coherent backscattering based on the Rayleigh−Hans phase function have been performed for the first time. On the

basis of alternative phase functions, the effect of decreasing the spatial coherence length of the incident radiation on

the shape of the angular peak of coherent backscattering is investigated. It is shown that with decreasing coherence

length both models lead to broadening of the peak, which can be used in biomedical diagnostics.
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1. Introduction

Optical methods of medical diagnostics have progressed

rapidly in the last decade [1–6]. The so-called
”
transparency

window“ in the near infrared region makes it possible

to retrieve data from radiation scattered by the biological

environment, and the actual harmlessness of this radiation

enables its use in the study of living organisms. The dis-

covery of coherent [7–14] and correlation [15,16] effects in

multiple scattering in randomly inhomogeneous media led

to the development of near infrared spectroscopy (NIRS)
and diffuse correlation spectroscopy (DCS) in application to

biological systems. Different types of infrared radiation are

used in experiments: continuous-wave (CW) irradiation of

biological tissues [17–20], short pulses [21–24], or radiation
with various types of modulation [21,25,26]. In the present

study, we examine the scattering of a continuous plane laser

wave incident on a flat boundary of a semi-infinite randomly

inhomogeneous medium. Particular attention is paid to

the effect of coherent backscattering (CBS) enhancement

in which the wave nature of multiply scattered radiation is

manifested most clearly. Note that the extreme narrowness

of the CBS cone angle [12–14] is a significant hindrance to

the application of CBS in biomedical practice. Therefore,

one of the important tasks is the preparation and modeling

of systems and settings in which the CBS cone angle gets

wider.

When one determines the physiological state of biological

tissues based on scattered radiation data, it is important to

know the optical parameters of a random medium: scatter-

ing coefficient µs and absorption coefficient µa . It is crucial

to take into account the anisotropy of the single scattering

indicatrix or the phase function when these coefficients are

being established. The experimentally determined value

is reduced scattering coefficient µ′

s , which is related to

scattering coefficient µs as µ′

s = (1− g)µs [27], where

parameter g = 〈cos θ〉 is the average cosine of the single

scattering angle. Thus, parameter g in the lowest-order

approximation does already characterize the anisotropy of

the phase function; at the same time, all kinds of phase

functions characterizing the anisotropy of single scattering

may yield the same value of 〈cos θ〉. Therefore, the problem
of comparing the results of backscattering calculated with

different model phase functions arises naturally in multiple

scattering. The empirical Henyey−Greenstein (HG) phase

function, which includes parameter g directly, is the one

used most often to model anisotropic scattering. The

popularity of this phase function rests mainly on its

mathematical convenience. Disadvantages of the HG model

include the lack of its justification at the
”
micro level“; this

phase function is not a calculated indicatrix of scattering

by a certain type of inhomogeneity in biological tissue.

The scattering anisotropy and parameter g itself depend on

the physical properties of scatterers and, most notably, on

their sizes. The simplest model taking into account the

type of scattering particles and their sizes is the model

of a suspension of hard spheres, which corresponds, e.g.,

to red blood cells. In the lowest-order approximation

in permittivity deviations, this model gives rise to the

Rayleigh−Gans (RG) phase function. The present study

is focused on numerical modeling with these two phase

functions (HG and RG). The description of scattering based

on Mie formulae is formally more accurate than the RG

model, but it is rather difficult in a mathematical sense to
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use Mie formulae in modeling. Note that the degree of

anisotropy of single scattering in the RG and Mie models

is specified by dimensionless parameter kR, where R is the

particle radius and k is the wave number.

In the present study, the intensity of laser radiation

backscattered by a biological medium was calculated on

the basis of the Bethe−Salpeter equation, which was used

to characterize the transfer of radiation in a randomly

inhomogeneous medium. The iterative solution of this

equation yields the scattered intensity presented as a series

in scattering multiplicities. The terms of this series are

multiple integrals that were calculated using the Monte

Carlo (MC) method. The modeling method developed

here allowed us to determine the degree of influence of

the anisotropy type of the single scattering indicatrix on

the calculation results. The results obtained using the

HG and RG indicatrices were compared for this purpose.

A comparative analysis of the results of calculations of

the backscattering intensity as a function of the distance

between a source and a detector located on the surface

of a semi-infinite randomly inhomogeneous medium has

been performed earlier in [28] for the HG and RG

phase functions. Calculations were carried out within a

wide angular range with account only for the primary

(incoherent) contribution to the scattering intensity, which

corresponds to the use of the Bethe−Salpeter equation

in the ladder approximation. Since the present report is

focused on the CBS peak region, coherent and incoherent

contributions to scattering were taken into account in

calculations with the HG and RG model functions. The

inverse transform method [29], which consists in inverting

the integral (cumulative) distribution function of random

spatial variables (scattering angles and free path length),
was used in our implementation of the MC algorithm. The

inverse transform of the cumulative distribution function is

easy to perform for the model HG indicatrix, and the result

is presented as an elementary function. In the present work,

an explicit form of the cumulative distribution function

found for the RG model allowed us to implement efficiently

the inverse transform method for this model and, in a

scientific first, simulate multiple scattering for both types

of phase functions simultaneously.

Broadening of the CBS cone with a reduction in the

degree of spatial coherence of incident radiation is another

important CBS effect. When modeling the reduction

in spatial coherence, we vary the number of scattering

multiplicities taken into account. The obtained calculated

data revealed that the use of low-coherence radiation allows

one to obtain a CBS cone with width and relative height

values close to the experimental ones [12].

2. Radiation transfer

The transfer of steady-state radiation in an infinite

randomly inhomogeneous medium may be characterized by

the Bethe–Salpeter equation

Ŵ(r2, r1| ks , ki) =
k4
0

4π2
G(ks − ki )δ(r2 − r1)

+
k4
0

4π2

∫

dr3G(ks − k23)3(r2 − r3)Ŵ(r3, r1|k23, ki ), (1)

where coherence function Ŵ(r2, r1|ks , ki ) characterizes the

propagation of radiation incident at point r1 and emerging

at r2 with initial and final wave vectors ki and ks ,

respectively; ki j = k0ri j/r i j ; ri j = ri − r j ; k0 = 2π/λ is

the wave number; and λ is the wavelength in vacuum.

The product of two complex−conjugate average Green’s

functions of a scalar field yields single scattering propagator

3(r) = r−2 exp(−µr), where µ = µs + µa is the extinction

coefficient. G(k) is the Fourier transform of the correlation

function of permittivity fluctuations:

G(k) =

∫

d(r− r0)e
−ik·(r−r0)〈δε(r)δε∗(r0)〉.

The optical theorem relates scattering coefficient µs to

the integrated intensity of single scattering, and both these

quantities are expressed through correlation function G(k);
in the case of a scalar field,

µs =
k4
0

(4π)2

∫

d�sG(ks − ki). (2)

The Rayleigh factor is added to (2) for an electromagnetic

field: G → G(1 + cos2 θs )/2.

Having introduced the normalized phase function

p(k̂s k̂i) = G(ks − ki)/

∫

d�s G(ks − ki),

where k̂ denotes a unit vector along k, one may rewrite

Eq. (1) in the following form:

Ŵ(r2, r1|ks , ki ) = µs p(k̂s k̂i)δ(r2 − r1)

+ µs

∫

dr3p(k̂s k̂23)3(r2 − r3)Ŵ(r3, r1|k23, ki ). (3)

Note that the phase function depends only on the cosine

of angle θ between the vectors that are its arguments; i.e.,

p(k̂s , k̂i) = p(cos θ).

3. MC modeling

Let z be the Cartesian coordinate of point r = (r⊥, z )
normal to the boundaries of a plane-parallel layer with

thickness T (0 ≤ z ≤ T , including the case of a semi-

infinite medium, z ≥ 0). Within a constant dimensional

factor, the main incoherent part of intensity of radiation scat-

tered into the upper half-space (
”
backscattered“ radiation)
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Figure 1. Schematic representation of the coherence effect

in backscattering. Phase differences between the field and its

complex conjugate, which propagated in the opposite direction,

are preserved in backscattering.

is [28,29,30]

J(ki , ks ) = 4π

∞
∫

0

dz 1

∫

z 2>0

dr2Ŵ(r2, r1|ks , ki )

× exp

(

−µ

(

z 2

cos θs
+

z 1

cos θi

))

,

where θi is the incidence angle and θs is the backscattering

angle measured from the direction opposite to axis z .
The iterative solution of Bethe–Salpeter equation (3) yields

a representation of intensity in the form of a series in

scattering multiplicities:

J(ki , ks ) =
∞
∑

n=1

J(n)(ki , ks ), (4)

where J(n)(ki , ks ) is the contribution of the nth scattering

order.

Within the ladder approximation based on the

Bethe−Salpeter equation, we present term J(n)(ki , ks ) of

order n as the average over a sample of Nph incident

photons:

J(n)(ki , ks ) =
1

Nph

Nph
∑

j=1

W ( j)
n (ki , ks )

× p
(

k̂
( j)
n n−1k̂s

)

f BLB(ki , ks , z ( j)
1 , z ( j)

n ), (5)

where W ( j)
n (ki , ks ) and z ( j)

n are the weight and the

distance from the boundary to point r
( j)
n of the nth

scattering event, respectively. Bouguer–Lambert–Beer fac-

tor f BLB(ki , ks , z ( j)
1 , z ( j)

n ) characterizes the propagation of

radiation from the entry point to the point of first scattering

and, in the Fraunhofer approximation, from the point of nth

scattering to its emergence from the medium. It depends

on the optical parameters of the medium in the photon path

and on the photon flux geometry. When scattering in the

CBS region is studied, one needs to introduce into sum (4)
the contributions not only of ladder diagrams, but also of

maximally crossed diagrams [20].

Weight W ( j)
n is a random value of a multiple spa-

tial integral emerging as the nth order iteration of the

Bethe−Salpeter equation. Calculating it, one may model

a stochastic sequence (or trajectory) of scattering points

r1, . . . rn. The complete sum of ladder diagrams, which

is practically independent of the backscattering angle in

the region of the backscattering peak, is denoted as

JL(ki , ks ) =
∑

n
J(n)

L (ki , ks ), and the complete sum of maxi-

mally crossed diagrams is

JC(ki , ks ) =
∑

n

J(n)
C (ki , ks ).

For a wave backscattered at angle θ = θs (see Fig. 1),
function f BLB = FL in expression (5) in the terms with

ladder contributions. where

FL

(

r
( j)
1 , r( j)

n

)

= exp
(

−µ(z ( j)
1 + z ( j)

n /cos θs )
)

,

while f BLB = FC in the terms with contributions from

maximally crossed diagrams, where

FC

(

r
( j)
1 , r( j)

n

)

= exp

(

−
µ

2

(

z ( j)
1 + z ( j)

n

)

(

1 +
1

cos θs

))

× exp
[

ik
(

x ( j)
1 − x ( j)

n

)

sin θs

+ ik
(

z ( j)
1 − z ( j)

n

)

(1− cos θs )
]

.

The MC method in radiation transfer theory is based

on the well-known inverse transform procedure [29,32,33],
which allows one to transform an integral with an expo-

nential distribution over semi-infinite interval [0,∞] into

an integral with respect to a random variable distributed

uniformly over unit interval [0, 1]. Within the standard

algorithm, the exponent in propagator 3(r) gives the

probability density of distribution f (r) = µ−1
s exp(−µs r)

of random variable r , which is the distance between two

successive scattering points for a photon. The integral

exponential distribution function is easy to find:

ξ = F(r) = 1− exp(−µs r),

where ξ or ξ ′ = 1− ξ are random variables distributed

uniformly over unit interval [0, 1]. The inverse transform

yields

r = −µ−1
s ln ξ ′.

The inverse transform method is applied similarly to

integrals with respect to angular variables. First, we switch

from random scattering angle θ in a scattering event to

t = cos θ, which is then considered as a random variable
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distributed in accordance with a given phase function p(t).
As was done for spatial variable r , we switch from the

integral with respect to variable t to the integral with respect

to random variable χ, having defined the integral distribution

function

χ = F(t) = 2π

t
∫

−1

p(t′)dt′.

Inverse transform t = F−1(χ) for random variable χ dis-

tributed uniformly over unit interval [0, 1] yields random

variable t distributed in accordance with phase function p(t).
In biomedical applications, the HG phase function is used

most often, since it has an important advantage: the

inverse transform of cumulative function (6) is performed

analytically in explicit form. When the RG phase function

is used to characterize single scattering, one gets a chance

to model the optical properties of biological tissue based

on a physical suspension model, but this approach leads to

significant mathematical complications [28,34].

4. Specifics of the inverse transform for
the RG phase function

Calculating the scattering intensity in accordance with

formula (4), we switch from 3D integration with respect

to r j to integration with respect to difference variable

r′j = r j − r j−1 for each j = 2, 3, . . . in succession and find

∫

dr′j3(r ′j )p(t j) f (r ′j , t j) =
1

2πµ

×

1
∫

0

dξ j

1
∫

0

dχ j

2π
∫

0

dφ j f

(

−
ln ξ j

µ
, t(χ j)

)

, (7)

where f (r ′j , t j) is an arbitrary function, t j = t(χ j ) is the

function inverse to χ j = χ(t j ) in (6), and φ j is the azimuthal

angle. As was noted in Section 3, integration in (7)
is performed by averaging over a sample of uniformly

distributed random variables ξ j , χ j ∈ [0; 1] and φ j ∈ [0; 2π].

It is known that the RG indicatrix anisotropy is deter-

mined entirely by dimensionless parameter kR. Introducing
new variable q = kR

√

2(1− t), which is the modulus of the

dimensionless vector of scattering at a particle with radius R,
into phase function p(t), we obtain complex function

p (t(q)) = p

(

1−
q2

2k2R2

)

.

In what follows, we write p(q) instead of p(t(q)) for

simplicity. In these new variables, formula (6) takes the

form

1− χ = 2π(kR)−2

q
∫

0

p(q′)q′dq′. (8)

The following normalization condition was taken into

account here:

2π(kR)−2

∫ 2kR

0

p(q)qdq = 1. (9)

If we consider function 2π(kR)−2p(q)q to be the prob-

ability density function of random variable q ∈ [0, 2kR],
function χ′(q) = 1− χ(q), according to (8), is the inte-

gral distribution function: the probability that quantity q′

assumes a value from the q′ < q interval.

The RG phase function [28,35] may be written as

p(q) = 2(πA)−1q−6(sin q − q cos q)2.

Constant A = (kR)−2F(2kR) is determined from normaliza-

tion condition (9), where function F(q) is given by

F(q) = 4

q
∫

0

q′−5(sin q′ − q′ cos q′)2dq′.

Importantly, the F(q) function turns out to be elementary:

F(q) = q−4(q4 − q2 + q sin 2q − sin2 q),

0 ≤ F(q) < 1. (10)

Thus, normalized quantity F(q)/F(2kR) is actually the

integral distribution function of random variable q and may

be identified with random variable χ′ distributed uniformly

over interval [0, 1] in the stochastic inverse transform

method:

χ′ = F(q)/F(2kR).

Note that qmax = 2kR. The inverse transform yields q,

q = F−1(x), (11)

where x = F(2kR)χ′, 0 ≤ x ≤ F(2kR) < 1.

Applying the Lagrange theorem on inversion of series

from (10), we obtain expansion

q2 =
9

2
x

(

1 +
9

20
x +

81

280
x2 +

2403

11200
x3 + . . .

)

, (12)

which allows for easy determination of inverse func-

tion (11). However, series (12) converges only at

|x | < x1 ≈ 0.9528. The value of x1 = F(q1), where

q1 ≈ 4.4934 is the smallest positive root of transcendental

equation

tg(q) = q. (13)

The series diverges at point |x | = x1, since (F−1)′(x1) = ∞
due to F ′(q1) = 0; therefore, expansion (12) may be used

in numerical calculations only at x being significantly lower

than x1.

The scattering indicatrix is proportional to

F ′(q) = 4(q cos q − sin q)2/q5 and turns to zero at

points qn where condition (13) is satisfied,

qn = rn − r−1
n −

2

3
r−3

n −
13

15
r−5

n −
146

105
r−7

n + · · · ,
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rn = π(n + 1/2), n ≥ 1. With a high degree of accuracy,

qn = (n + 1/2)π − ((n + 1/2)π)−1 .

The numerical values of sequences qn and χ′n make it

possible to use model polynomial approximations with a

given accuracy. Inverse function F−1(x) has derivative sin-

gularities at points xn = F(qn):
(

F−1(x)
)′

∝ (x − xn)
−2/3.

In the numerical algorithm for F−1(x), we use a piecewise

smooth approximation such that the function itself is

continuous everywhere and its first derivative has correct

singularities at all points xn . A high-order approximation of

type (12) is used at small x lying far from x1 ≈ 0.95.

5. Results of CBS modeling with the use
of two different indicatrices

A small peak width is the main obstacle to application of

the CBS enhancement effect in biomedical practice. It has

been demonstrated in [36,37] that the peak width increases

significantly (while the peak height decreases) with a

reduction in the spatial coherence of incident radiation. A

reduction in spatial coherence is modeled in the considered

computational scheme by lowering the maximum number

of scattering events nsc. The following relation between

parameter g , which governs the scattering anisotropy in the

HG model, and the value of kR in the RG model [28,34]
allows one to compare angular dependences of the CBS

intensity calculated using the HG and RG indicatrices, the

angular distributions of which were presented in [28]:

g =
4− (kR)−2Cin(4kR)

F(2kR)
− 3,

where Cin(x) is the integral cosine.

The following matching rules are valid for an incident

beam with wavelength λ = 685 nm in a medium with

refraction index n = 1.33: g = 0.773 for spherical particles

with R = 250 nm and g = 0.925 for R = 500 nm. The

indicatrix is isotropic if g = 0 and particles are point-like

with R = 0.

The figures below present the results of calculations

of the angular dependences of backscattering with just

the coherent contribution taken into account at different

degrees of anisotropy of the single scattering indicatrix.

Specifically, Figs. 2 and 3 show the angular dependences

of the CBS peak calculated for the HG and RG phase

functions, respectively. Calculations with the RG phase

function applied to a system of point particles characterize

the results of isotropic scattering. A comparison of these

calculations with the results obtained with the HG phase

function at g = 0 reveals that they are virtually matching

with satisfactory accuracy. However, as the scattering

anisotropy grows, the angular dependences start to differ

noticeably, and the discrepancy becomes significant when

the scatterer size comes close to the wavelength. While the

CBS peak remains quite narrow in calculations performed

with the HG phase function, calculations based on the RG
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Figure 2. Dependence of the CBS intensity on angle θs in the

HG model for media with a given anisotropy parameter: dashed

curve — g = 0.001, solid curve — g = 0.772, and curve with

filled squares — g = 0.925.
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Figure 3. Dependence of the CBS intensity on angle θs in the

RG model for media with a given scatterer radius: dashed curve —
R = 0.001 nm, solid curve — R = 250 nm, and curve with filled

squares — R = 500 nm.

model reveal a significant broadening of the peak, which

indicates that CBS may be used in biomedical applications.

The dependence of results on technical parameters of

calculations (in particular, the choice of joining points for

the intervals of approximation of the integral distribution

function in the RG model) grows stronger as the phase

function anisotropy increases. The CBS peak broadening

is observed in all cases, but the quantitative description is

unstable. According to [36,37], the observed broadening

of the CBS peak is attributable to a reduction in the

coherence of incident radiation, and this broadening is

accompanied by a significant reduction in height of the

peak itself. The peak height in these studies was about

8% of the theoretically predicted height calculated from the
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incoherent ladder contribution. To characterize the effect

of a reduction in spatial coherence of incident radiation on

CBS, we performed calculations with restrictions on total

number of scatterings nsc. It was assumed that nsc may

be regarded as the number of scatterings after which the

phase of oscillations loses consistency and becomes random.

Spatial coherence length Lc was taken equal to Lc = nscls .

Having denoted the backscattering intensity calculated from

ladder diagrams only starting from double scattering (i.e.,
the main incoherent part) as JL(θs ) and the coherent

component calculated based on maximally crossed diagrams

as JC(θs ), we define the CBS enhancement parameter as

h(0) = (JL(0) + JC(0))/JL(0).
The values of CBS enhancement parameter h(0) de-

termined in almost all experimental studies (even pio-

neering ones [12,14,38]) are noticeably lower than the

maximum theoretical value of h(0) = 2. Specifically,

experimental value h(0) = 1.64, which matches the result

of our numerical calculations at nsc = 340, was obtained

in [12]. CBS peak half-width θHW = 1.50 mrad calculated

at this nsc also agrees well with the experimental value of

θHW = 1.58 mrad [12].
Figures 4 and 5 present the angular dependences of

CBS in half-spaces with media in which the scattering

anisotropy is modeled by the HG and RG phase functions,

respectively. In calculations with the HG indicatrix, the

anisotropy parameter was taken equal to g = 0.925; the RG

indicatrix was taken for particles with radius R = 500 nm,

which corresponds to the same anisotropy parameter value.

These figures show how the angular dependences of CBS

(primarily the height and half-width of the peak) change

with a reduction in the number of scatterings taken into

account (nsc) and, consequently, spatial coherence length

Lc = ls nsc. The overall result of modeling with both

phase functions is that the peak loses its height (with

a simultaneous increase in its FWHM) as the coherence
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Figure 4. Dependence of the CBS intensity on angle θs in the HG

model for media with a given number of scatterings. Squares —
nsc = 5000, diamonds — nsc = 100, triangles — nsc = 50, and

circles — nsc = 15.
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Figure 5. Dependence of the CBS intensity on angle θs in the RG

model for media with a given number of scatterings. Squares —
nsc = 5000, diamonds — nsc = 100, triangles — nsc = 50, and

circles — nsc = 15.

length decreases. It is also evident that the peaks calculated

using the RG model are broader and almost always higher

than the ones obtained with the HG phase function at the

same Lc values.

It is worth noting that the CBS effect for low-coherence

optical radiation was used in [37] to study human colon

tissue cancer. The h(0) peak height determined in these

experiments was close to 1.07, and the half-width was

θHW ≈ 3.5mrad. Our MC modeling yields the same h(0)

value at nsc = 20.

6. Conclusion

Comparative modeling of the CBS effect with anisotropy

characterized using the HG and RG phase functions

was performed based on the Bethe–Salpeter equation for

transfer of optical radiation in a randomly inhomogeneous

medium. An analytical inverse transform method for the

angular integral distribution function has been implemented

for the first time in the MC algorithm for the RG indicatrix.

A piecewise smooth approximation was proposed for this

distribution function. The results of calculations revealed

that the RG model yields a broader and higher CBS peak

than the HG model with the same degree of anisotropy

of the single scattering indicatrix. Broadening of the CBS

peak with a reduction in coherence of incident radiation was

modeled. It turned out that this broadening in calculations

performed with the RG phase function is more significant

than the one in calculations with the HG indicatrix. The

predicted broadening indicates that this effect has potential

for application in biomedicine.
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