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Unidirectional pulses: relatively undistorted quasi-spherical waves,

Fourier-Bessel integrals, and plane-waves decompositions
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1. Introduction

In recent years, there has been an increased interest in

localized solutions of the wave equation

∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z 2

−
1

c2

∂2u
∂t2

= 0 (1)

(with x , y , and z Cartesian coordinates, t time, and c > 0

wave speed assumed constant), having the property of

unidirectionality [1–10]. Real and imaginary parts of such

solutions can be used as components of the Hertz’s vector

in the construction of unidirectional electromagnetic pulses.

One of the formulations of unidirectionality [7] consists

in the requirement that only homogeneous plane waves

traveling in directions forming an angle with a certain

chosen direction not exceeding π
2
, are present in the

decomposition of the solution in plane waves. This property

expresses the requirement, natural from a physical point of

view, that the mathematical model of the pulse describe its

propagation strictly from the source. Unidirectional pulses

are sometimes called causal [3,4]. It is noteworthy that the

unidirectionality understood in the above sense does not

exclude the possibility that in some spatiotemporal regions

the projection of the energy flow vector on the chosen

direction may turn out to be negative [8,9,11].
In what follows, the chosen direction of propagation

will be the direction of the z axis. Accordingly, we will

call the solution unidirectional if the z projections of the

wave vectors of its plane-wave constituents are non-negative.

Trivial examples of unidirectional solutions are a plane wave

and a finite combination of plane waves that are not spatially

localized. In this paper, we address solely unidirectional

pulses, localized with respect to all spacial coordinates at

any fixed instant in time.

The first results on the construction of unidirectional

pulses were based on the consideration of axisymmetric

solutions of the equation (1) in the form of Fourier-Bessel

integrals:

u = u(ρ, z , t) =

∞
∫

0

dω eiωt

ω/c
∫

0

dkz A(kz , ω)e−ikz z

× J0(ρ
√

ω2/c2 − k2
z ), (2)

where ρ =
√

x2 + y2, with fairly arbitrary weight functions

A [1–3]. A proper choice of such a weight allowed to find

several solutions expressed in terms of elementary functions.

The simplest localized unidirectional solution, however, was

found differently and was based on a lucky trick [5,6], which

used a partial fraction decomposition of the well-known

splash pulse [12–14]. This solution is

u =
1

S(S − z ∗)
, (3)

where

S = S(t,R) =
√

c2t2∗ − ρ2, (4)

with R denoting the position vector of the observation point,

and

z ∗ = z + iζ , t∗ = t + iτ . (5)

Here, ζ and τ > 0 are free parameters which are assumed

real. The square root branch in (4) is chosen so that

S|x=y=0 = ct∗, in which case for arbitrary values of t,R
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the inequality ℑS ≥ cτ [6] holds. The solution (3) is non-

singular under the condition ζ < cτ , and then its energy

is finite [6,7]. We also note that with proper choice of

free parameters ζ and τ , this solution can model pancake-

shaped, ball-shaped and needle-shaped focused pulses. The

proof of its unidirectionality was presented in [7,9].
On the other hand, Besieris and Saari [9] (see also

[2,10]) noted that a special class of relatively undistorted

waves is important in the description of unidirectional wave

propagation. This is the name of the solutions of the

equation (1) of the form

u = g f (θ), (6)

where the amplitude g = g(x , y, z , t) and the phase

θ = θ(x , y, z , t) functions are fixed, and waveform f is

an arbitrary function [15,16]. If the phase function θ is

complex-valued, then the waveform f must be analytical in

the range of values θ [17].
The class of axisymmetric solutions we are interested in

has the form

u =
f (θ)

S
, (7)

where

θ = S − z − ib, (8)

b = cτ > 0, with an arbitrary waveform f analytical in the

upper half-plane C+ [6]. The imaginary shift ib in (8) is

introduced in order to have the upper half-plane as the range

of values of the phase θ.

In order for solutions of the form (7) to describe a

localized wave, we will require a fairly fast decrease (no
slower than 1/|θ|) of the function | f (θ)| when |θ| → ∞.

Let us explain how one can easily come to such solutions.

Let us consider a relatively undistorted wave corresponding

to spherical waves [15],

u =
f (R − ct)

R
, (9)

R =
√

x2 + y2 + z 2. The equation (1) is invariant under

replacement

z 7→ i(ct + ib) , ct 7→ i(z + ib) . (10)

where b is a free real constant. To match with (3)–(5),
we take b = cτ > 0. Under the transformation (10), the
phase function R − ct in (9) goes into the expression (8),
which we will call it quasi-spherical phase. The imaginary

part of (8) is non-negative for all values of spatial and

temporal variables. Redefining the waveform using the rule

f (iθ)/i 7→ f (θ), we obtain a class of relatively undistorted

waves of the form (7), which we will call quasi-spherical.

Note that the expression (3) is a special case of (7) when

f (θ) = 1
θ+i(b−ζ ) . A number of more complex, although

expressed through elementary functions, solutions from this

class were found in [1,3,10]. A solution close to that found

in [5,6], but less general — with ζ = 0 — is presented in [8].
The article [9] provides an overview of such solutions.

An example of a unidirectional solution for a time-

harmonic regime is given in [18]. This solution has an

asymptotic behavior corresponding to a Gaussian beam with

arbitrary astigmatism.

In this note, we establish a relation between solutions

described by (7) and (2). Further, we represent these

solutions in the form of a superposition of plane waves.

Our approach is based on a technique for studying localized

solutions that goes back to Blagoveshchenskii [19] and

Moses–Prosser [20]. It rests upon formulas expressing

the solution through its asymptotic behavior in the far

zone at large time. This technique turns out to be

convenient, in particular, for calculating such characteristics

of a localized pulse as energy, momentum and orbital

angular momentum [7,21].

2. The Blagoveshchenskii — Moses —
Prosser approach and the
unidirectionality of quasi-spherical
waves

2.1. Blagoveshchenskii — Moses — Prosser
approach

We denote the position vector by R = x i + y j + zk,
where i, j and k are unit vectors along the coordinate axes.

Let n = R
R , |n| = 1 be the related to R unit vector, and R

= |R| =
√

x2 + y2 + z 2 be the distance to the Cartesian

origin.

Consider an arbitrary smooth localized solution of the

wave equation (1), assuming that R and ct grow consis-

tently, i.e., that their difference

s = R − ct (11)

remains constant. Evidently, R = (ct + s)n.
In the works of Blagoveshchenskii [19] and Moses–

Prosser [20], it was found that for any solution of the wave

equation decreasing rapidly enough at R → ∞, for any fixed

s and any direction n there exits the limit

F(s, n) = lim
t→∞

[ct u (t, (ct + s)n)] . (12)

The limit (12) characterizes, at large values of time, the

amplitude of the pulse in the direction of n. For a

unidirectional (along the z axis) wave packet, obviously

F(s, n) ≡ 0 for all n whose projections on the z axis are

negative, i.e. n · k < 0, where n · k is the scalar product of

the vectors n and k.

We will characterize the direction n by the angles χ and

ϕ of the spherical coordinate system with the polar axis z :

n = sin χ cosϕ i + sin χ sinϕ j + cos χ k,

0 ≤ ϕ < 2π, 0 ≤ χ ≤ π. The unidirectionality condition

takes the form

F(s, n) ≡ 0 ,
π

2
< χ ≤ π. (13)
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The nontrivial result of Blagoveshchenskii – Moses –
Prosser (see [16,19,20]) is that the solution of u at any point

of R at any moment t is representable through the limit (12)
as follows:

u(t,R) =
1

2π

x

|N|=1

F ′(N ·R− ct,N) d2N , (14)

where the notation is introduced

F ′(s,N) =
∂F(s,N)

∂s
.

The integration is carried out over the unit sphere |N| = 1,

and d2N denotes the element of its surface area. In spheri-

cal coordinates N = sinX cosφ i + sinX sinφ j + cosX k,

and the area element of the sphere takes the form

d2N = sinX dX dφ.
The formula (14) represents the solution u in the form of

a superposition of nonstationary plane waves.

2.2. Quasi-spherical wave (7) at large time and
large distance

Let us find the limit (12) for the solution (7). If cos χ 6= 0,

then at t → +∞

S = S
(

t, (ct + s)n
)

=

√

(ct + ib)2 − (ct + s)2 sin2 χ

≈ ct| cos χ| +
ib − s sin2 χ

| cos χ|
≈ ct| cos χ|,

so that

θ = S − (ct + s) cos χ − ib ≈ ct(| cos χ| − cos χ)

+
−s(sin2 χ + cos χ| cos χ|) + ib(1− | cos χ|)

| cos χ|
.

For directions n making an obtuse angle

with the z axis, cos χ < 0, that is, χ > π
2
, we

have u ≈ f (2ct| cos χ|)/(ct| cos χ|) , and since

f (2ct| cos χ|) → 0, from (12) it follows that

F(s, n) = 0.

For directions n making an acute angle with the z axis,

cos χ > 0,

u(t, (ct + s)n) ≈
1

ct cos χ
f

(

−s + ib(1− cos χ)

cos χ

)

,

and (7) implies

F(s, n) =
1

cos χ
f

(

−s + ib(1− cos χ)

cos χ

)

.

Finally, for χ = π
2
a similar calculation gives the value

F(s, n) = lim
t→∞

[√

ct
2(ib − s)

f
(

√

2ct(ib − s)
)

]

=
1

2(ib − s)
lim
θ→∞

θ f (θ).

This limit is finite if | f (θ)| decreases not slower than |θ|−1,

as we have assumed. Since the circle χ = π
2

does not

contribute to the integral (14), the value of F(s, n)|χ= π
2
can

be replaced by zero and the result written in the form

F(s, n) =
H(cos χ)

cos χ
f

(

−s + ib(1− cos χ)

cos χ

)

, (15)

with H the Heaviside step function

H(p) =

{

1, p > 0,

0, p < 0.
(16)

Thus, since for a quasi-spherical wave in the formula

(14) the integration occurs over the forward hemisphere

N · k > 0, the unidirectionality of the pulse (7) is estab-

lished.

2.3. On angular divergence of quasi-spherical

waves

It should be noted that quasi-spherical solutions can

describe pulses having not only a significant (as in the

examples discussed in [5,6,8]), but also a small angular

divergence. Strong angular localization requires a rapid

decrease in the modulus of the function f (θ) with the

growth of ℑθ. This property is possessed, for example, by

the waveform introduced by Lekner [10], having the form

f (θ) = exp(iKθ))/(θ + ib),

(K is a real constant), for which the angular localization in

the angle χ has Gaussian character.

A number of examples of a waveform that provides

Gaussian localization not only in angles, but also in a

longitudinal variable can be found in the work of Kiselev

and Perel [22] (see also [16,23]), devoted to wave packets

of a different nature.

3. Integral representations of the
quasi-spherical wave

3.1. Representation by superposition of

non-stationary plane waves

Differentiating the function (15) with respect to the first

argument, we obtain

F ′(s, n) = −
H(cos χ)

cos2 χ
f ′

(

−s + ib(1− cos χ)

cos χ

)

, χ 6=
π

2
.

(17)
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Substituting (17) into (14) and replacing n with N gives

u = −
1

2π

x

6+

d2N

cos2X
f ′

(

ct − NR + ib(1− cosX)

cosX

)

= −
1

2π

π
∫

−π

dφ

π
2

∫

0

sinX dX
cos2X

×

f ′

(

(ct+ib)−(z +ib) cosX−(x cosφ + y sinφ) sinX

cosX

)

,

(18)
where 6+ denotes the forward semi-sphere

{|N| = 1, X < π
2
}.

3.2. Representation by a superposition of
monochromatic plane waves

Let us represent the waveform as follow

f (θ) =

∫ ∞

0

f̂ (κ) exp(iκθ) dκ ,

this representation holds for fairly rapidly decreasing func-

tions f . Integration is carried out along the positive semi-

axis in view of the analyticity of f in the upper half-plane.

Then

f ′(θ) = i
∫ ∞

0

f̂ (κ) exp(iκθ)κ dκ .

Therefore,

u = −
i
2π

π
∫

−π

dφ

π
2

∫

0

sinX dX
cos2 X

∞
∫

0

f̂ (κ) exp

(

iκ×

(ct + ib) − (z + ib) cosX− (x cosφ + y sinφ) sinX

cosX

)

× κ dκ = −
ia
2π

π
∫

−π

dφ

π
2

∫

0

sinX dX

∞
∫

0

f̂ (k cosX )

× exp
[

ik
(

(ct + ib) − (z + ib) cosX

− (x cos φ + y sinφ) sinX
)]

k dk,
(19)

where the replacement κ = k cosX was made. The

right-hand side of (19) can be understood as a volume

integral presented in spherical coordinates (k,X, φ), with

k2 dk sinX dX dφ being the volume element and the

integrand being

f̂ (k cosX)
eik[(ct+ib)−(z+ib) cosX−(x cos φ+y sin φ) sinX]

k
.

The area of integration is the half-space 0 ≤ X < π
2
. Passing

in (19) to Cartesian coordinates

kz = k cosX , kx = k sinX cosφ , ky = k sinX sinφ ,

we find

u = −
i
2π

∞
∫

0

f̂ (kz )dkz

∞
∫

−∞

dkx

∞
∫

−∞

dky

×
ei[k(ct+ib)−kz (z+ib)−kxx−ky y ]

k
, (20)

with k =
√

k2
x + k2

y + k2
z .

Thus, we presented the quai-spherical wave (7) in the

form of expansion in monochromatic plane waves.

Continuing the integrand with zero to negative values of

kz , we obtain

u = −
i
2π

y

R3

H(kz ) f̂ (kz )
ei[k(ct+ib)−kz (z+iζ )−kx x−ky y ]

k
d3k,

(21)
with d3k = dkx dkydkz standing for volume element.

3.3. Representation by a superposition of

monochromatic cylindrical waves by the

Fourier–Bessel integral

Now we pass in (19) to cylindri-

cal coordinates, x = ρ cosϕ , y = ρ sinϕ ,

x cosφ + y sinφ = ρ cos(φ − ϕ) . Integration with respect

to φ and application of the well-known expression for the

Bessel function J0, J0(m) = 1
2π

∫ 2π

0
eim cos µdµ, see [24],

provides

u = −i

π
2

∫

0

sinX dX

∞
∫

0

f̂ (k cosX)J0(kρ sinX)

× eik[(ct+ib)−(z+ib)cosX ] k dk.

By substitution kz = k cosX we present (7) as follows

u = −i

∞
∫

0

eik(ct+ib)dk

k
∫

0

f̂ (kz )J0(
√

k2 − k2
z ρ)e−ikz (z+ib)dkz .

(22)
Introducing the variable ω = ck we come up with

u = −
i
c

∞
∫

0

eiω(t+ib/c)dω

ω/c
∫

0

f̂ (kz ) J0

(
√

(ω/c)2 − k2
z ρ

)

× e−ikz (z+ib)dkz .

(23)
which allows the following relation between the waveform

f (θ) in (7) and the weight A(kz , ω) in (2):

A(kz , ω) = −
i
c

e−(ω/c−kz )b f̂ (kz ). (24)
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4. Conclusions

Thus, we have established relationships between several

representations of localized unidirectional waves. These are

quasi-spherical waves (7), Fourier-Bessel integrals (2) and

superpositions of monochromatic (21) and non-stationary

(18) plane waves.
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