Фотоэлектрические свойства поверхностно-барьерных структур на основе пленок $Zn_{2-2x}Cu_xIn_xSe_2$, полученных селенизацией

© В.Ю. Рудь*¶, Ю.В. Рудь, В.Ф. Гременок[†], Е.П. Зарецкая[†], О.Н. Сергеева[†]

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

[†] Институт физики твердого тела и полупроводников Национальной академии наук Белоруссии, 220072 Минск, Белоруссия

(Получена 16 декабря 2004 г. Принята к печати 30 декабря 2004 г.)

1. Введение

Исследования ближайших кристаллохимических аналогов бинарных соединений $\hat{A}^{II}B^{VI}$, образование которых наглядно передается схемой перекрестных замещений двух атомов второй группы периодической системы химических элементов атомами из первой и третьей групп $(2A^{II} \to A^I + A^{III})$, привели к синтезу обширного класса тройных соединений $A^{I}B^{III}C_{2}^{VI}$ [1,2]. Переход к изучению тройных и более сложных позиционноупорядоченных фаз не только решил проблему расширения круга материалов современной полупроводниковой электроники, но и определил ее прогресс в ряде актуальных направлений. Так, например, на основе четверных твердых растворов Cu(In,Ga)Se₂ с решеткой халькопирита были получены тонкопленочные солнечные элементы с рекордной эффективностью ($\eta = 19.2\%$) и экстраординарной радиационной стабильностью [3–5]. Дальнейшее улучшение свойств таких фотопреобразователей требует выявления взаимосвязи технологических подходов с параметрами структур и привлечения новых систем твердых растворов на основе бинарных соединений.

Данная работа посвящена созданию и исследованию фоточувствительности структур на основе тонких пленок $\mathrm{Zn}_{2-2x}\mathrm{Cu}_x\mathrm{In}_x\mathrm{Se}_2$ (ZCIS), на синтезе которых впервые применен метод селенизации [6–9]. Ранее такие пленки выращивались только методом импульсного лазерного испарения синтезированных мишеней (CuInSe₂) $_x$ (2ZnSe) $_{1-x}$. Показано, что в системе существует непрерывный ряд твердых растворов, и ширина запрещенной зоны изменяется от 2.67 эВ (ZnSe) до 1.04 эВ (CuInSe₂) [10,11].

2. Экспериментальная часть

Особенностью метода селенизации является то, что процесс синтеза протекает в атмосфере одного из

наиболее летучих компонент, образующих выбранную систему, тогда как остальные компоненты наносятся в виде тонких пленок на твердый носитель, в качестве которого применяются стеклянные пластины. При повышении температуры компоненты пленок вступают в реакцию между собой и сосуществующей паровой фазой и образуют гомогенную пленку требуемого состава. В качестве паровой фазы использовался селен, поэтому в целом такой процесс получил название селенизация.

При получении пленок $Zn_{2-2x}Cu_xIn_xSe_2$ в работе исследовано два варианта подготовки исходных для селенизации компонент, осажденных на поверхность стеклянной подложки. В одном из них на поверхность пластин боросиликатного стекла наносились пленки ZnSe и смеси Cu и In с толщинами 0.6-0.8 мкм. Пленка ZnSe формировалась на поверхности стекла в результате вакуумной сублимации соединения из отдельного танталового нагревателя. Навеска порошкообразного ZnSe определялась исходя из требования обеспечения в результате селенизации заданного состава $Zn_{2-2x}Cu_xIn_xSe_2$. Пленки металлов Си и In чистотой В3 наносились термическим испарением в вакууме $\sim 7 \cdot 10^{-4} \, \text{Па}$ при температуре стеклянной подложки $T_s = 100$ °C. Напыление происходило из общей молибденовой лодочки со средней скоростью 0.05 мкм/мин. Концентрации Си и Іп в полученной пленке определялись навеской этих металлов, которая подбиралась эмпирически.

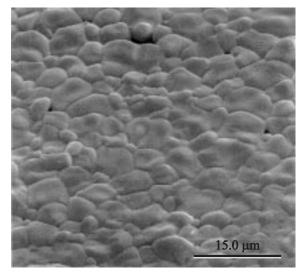
Селенизация подготовленных таким образом структур ZnSe/(Cu-In) происходила в результате взаимодействия между пленками во время диффузии селена из паровой фазы. Процесс этот проводился в печи со специальным профилем температуры в атмосфере инертного газа (N_2) [9]. Получение однофазных пленок ZCIS обеспечивалось двумя стадиями их термообработки совместно с селеном. На первой стадии селенизация осуществлялась при выдержке подложек в течение $t=10-30\,\mathrm{M}$ ин при температуре $240-270^\circ\mathrm{C}$, а на второй при $460-540^\circ\mathrm{C}$ в течение $t=15-40\,\mathrm{M}$ ин.

[¶] E-mail: rudvas@spbstu.ru

Состояние	№ образцов	Состав пле	(Cu + In + Zn)/Se	a Ou m				
исходных образцов		Мольная доля компонент	Си, ат%	In, ат%	Zn, ат%	Ѕе, ат%	(Cu + III + ZII)/3c	ρ , OM · CM
Стекло/ZnSe/(Cu-In)	Z4.1	$Cu_{0.92}In_{1.02}Zn_{0.18}Se_{1.88}$	22.95	25.56	4.49	47.00	1.128	1820
	2Z4.1	$Cu_{0.79}In_{0.85}Zn_{0.48}Se_{1.88}$	19.62	21.25	12.03	47.10	1.123	1680
	2Z4.2	$Cu_{0.79}In_{0.92}Zn_{0.40}Se_{1.89}$	19.65	22.99	10.04	47.32	1.113	5000
	3Z5.1	$Cu_{0.70}In_{0.82}Zn_{0.57}Se_{1.91}$	17.52	20.48	14.29	47.71	1.096	110
Стекло/(Zn-Cu-In)	1ZK27	$Cu_{1.04}In_{0.89}Zn_{0.16}Se_{1.91}$	25.95	22.31	4.084	47.66	1.069	0.24
	1ZK28	$Cu_{0.85}In_{0.73}Zn_{0.49}Se_{1.93}$	21.18	18.14	12.36	48.32	1.026	56
	2ZK27	$Cu_{1.03}In_{0.90}Zn_{0.17}Se_{1.90}$	25.79	22.66	4.159	47.40	1.11	108
	2ZK28	$Cu_{0.80}In_{0.79}Zn_{0.39}Se_{2.02}$	19.85	19.73	9.919	50.61	0.976	150

Таблица 1. Состав и удельное сопротивление пленок p-ZCIS при $T = 300 \, {\rm K}$

Во втором варианте процесса синтеза пленок термическое испарение навесок Zn, Cu и In велось одновременно из трех источников, после чего применялся режим двухступенчатой термической селенизации.


Структурные свойства и фазовый состав слоев до и после селенизации исследовались методом рентгеновского фазового анализа (РФА) в области углов $2\theta = 15 - 100^{\circ}$ на CuK_{α} -излучении с никелевым фильтром. Идентификация фаз в пленках проводилась сравнением экспериментально установленных межплоскостных расстояний d с данными таблиц JCPDS [12]. Микрорельеф поверхности, микроструктура и поперечный скол пленок исследовались методом сканирующей электронной микроскопии на микроскопе H-800 (Hitachi, Япония) с разрешением 0.2 нм. Элементный состав материала пленок определялся методом рентгеновской дисперсионной спектроскопии на аппарате "Stereoscan-360" (Великобритания) с EDX спектрометром АН 10000 (Link Analitic, Великобритания) с разрешением 1 мкм и чувствительностью 0.1 ат%. Качественный и количественный анализ элементного состава поверхности и по глубине выращенных пленок выполнялся на сканирующем оже-микрозонде PHI-660 (Perkin Elmer, США) с локальностью 0.1 мкм и чувствительностью 0.1 ат% на ионном микрозонде IMS-4F (Cameca). Количественный анализ проводился по методу чистых стандартов, где интенсивность токов оже-электронов корректируется на коэффициент элементной чувствительности.

3. Результаты и обсуждение

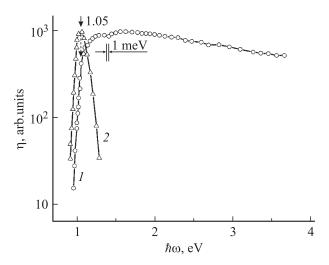
Разработанные режимы селенизации подготовленных двумя различными методами исходных структур стекло/ZnSe/(Cu-In) и стекло/(Zn-Cu-In) обеспечили получение ZCIS-слоев толщиной $1.0-2.0\,\mathrm{mkm}$ на площади $10\times10\,\mathrm{mm}^2$ с решеткой халькопирита, как в работах [10,11], где использовался процесс лазерного испарения исходного заранее синтезированного при достаточно высокой температуре ($T\approx1100^\circ\mathrm{C}$) вещества. РФА показал, что полученные обеими вариантами селенизации пленки являются гомогенными и параметры решетки

соответствуют объемным кристаллам [9,10]. Кристаллическая структура ZCIS-слоев относится к упорядоченной структуре халькопирита, что подтверждается наличием типичных рефлексов (112), (220/204), (116/312) и рефлексов сверхрешетки халькопирита (101), (103) и (201).

Исследования позволили установить, что химический состав пленок $Zn_{2-2x}Cu_xIn_xSe_2$ зависит от соотношения исходных компонент и условий синтеза. Типичный микрорельеф поверхности и химический состав некоторых ZCIS-пленок, полученных при оптимальных условиях селенизации, представлены на рис. 1 и в табл. 1. Из рис. 1 видно, что синтезированные пленки имеют плотную структуру, сформированную кристаллитами размером более 3 мкм. Развитый в работе режим селенизации обеспечил однородное распределение компонент по толщине слоев, что свидетельствует о достигнутой полноте реакции взаимодействия между исходными компонентами и подтверждает результаты РФА. Эти данные демонстрируют реальные возможности управления атомным составом пленок, при котором изменяется соотношение

Рис. 1. Типичная морфология поверхности пленок Z_{n_2-2} , Cu_x I_{n_x} Se_2 .

в концентрации атомов, занимающих разные позиции в решетке халькопирита. Из табл. 1 вытекает также вывод и о том, что оба исследованных варианта подготовки исходных компонент к проведению селенизации дают практически одинаковые возможности для получения тонких гомогенных пленок $Z_{n_2-2x}Cu_xIn_xSe_2$. В целом эти исследования демонстрируют перспективность применения метода селенизации для получения тонких пленок четверных селенидов. Такая технология может быть использована для развития промышленных методов получения пленок большой площади, используемых в качестве поглощающего слоя при создании тонкопленочных солнечных элементов.


Согласно знаку термоэдс все полученные селенизацией пленки ZCIS обнаружили *p*-тип проводимости, как и в случае применения лазерного испарения заранее синтезированного вещества [11]. Это обстоятельство не противоречит предположению о том, что низкотемпературное взаимодействие между металлами в условиях диффузии Se из паровой фазы сопровождается преимущественным образованием в таких веществах дефектов решетки акцепторного типа.

В табл. 1 приведены также значения удельного сопротивления ρ некоторых из полученных селенизацией $\mathrm{Zn}_{2-2x}\mathrm{Cu}_x\mathrm{In}_x\mathrm{Se}_2$ пленок твердых растворов. Видно, что развитые режимы селенизации дают возможность контролировать величину ρ в достаточно широком диапазоне от 0.2 до 500 Ом·см при $T=300\,\mathrm{K}$. По-видимому, обнаруженный довольно широкий диапазон изменения сопротивления пленок обусловлен изменениями в составе пленок (табл. 1), что демонстрирует возможности контроля их свойств за счет выбора параметров процесса селенизации.

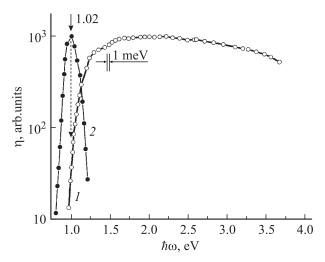
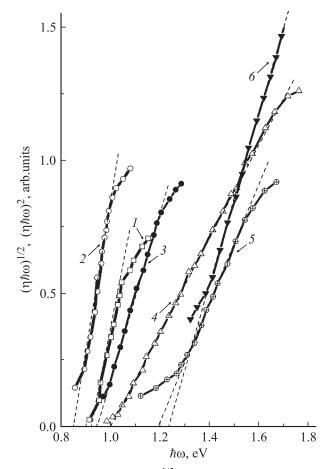

Начальные исследования контактных явлений на полученных селенизацией пленках $Z_{n_2-2x}Cu_xIn_xSe_2$ привели к обнаружению фотовольтаического эффекта на контактах их поверхности с чистым индием. Тонкие пленки In ($\sim 1\,$ мкм) наносились на поверхность ZCIS вакуумным термическим напылением. Фотонапряжение, как правило, было максимальным при освещении структур In/p-ZCIS со стороны барьерного контакта, который всегда заряжался отрицательно относительно пленок p-типа проводимости, что согласуется с направлением выпрямления в таких структурах.

Таблица 2. Фотоэлектрические свойства поверхностнобарьерных структур ${\rm In}/p\text{-}{\rm Zn}_{2-2x}{\rm Cu}_x{\rm In}_x{\rm Se}_2~(T=300~{\rm K})$

№ образца	S_U^m , B/BT	$\hbar\omega^m,$ эВ	ћω′, эВ	δ _{1/2} , эВ	φ _b , эВ	E_g^d , эВ
Z4.1	8	1.3-2.0	0.95	1.8	0.85	0.95
2Z4.1	8	1.0-2.0	0.96	1.9	0.87	1.20
2Z4.2	1380	1.3-1.7	1.05	2.4	0.95	1.02
3Z5.1	60	1.3-2.2	1.03	2.5	0.93	1.00
1ZK28	160	1.7-2.4	1.02	2.5	0.94	1.23
2ZK28	360	1.6-1.8	1.03	2.0	0.95	1.21

Рис. 2. Спектральные зависимости относительной квантовой эффективности фотопреобразования структуры In/p-ZCIS (образец N^{Ω} 3Z4.1) в неполяризованном излучении при освещении со стороны барьерного контакта (кривая I) и со стороны пленки ZCIS при $T=300\,\mathrm{K}$. Пленка получена селенизацией образца стекло/ZnSe/(Cu–In).

Рис. 3. Спектральные зависимости относительной квантовой эффективности фотопреобразования структуры In/p-ZCIS (образец № 1ZK28) при $T=300\,\mathrm{K}$ в неполяризованном излучении при освещении со стороны барьерного контакта индия (кривая I) и пленки ZCIS (кривая 2) при $T=300\,\mathrm{K}$. Пленка получена селенизацией образца стекло/(Zn–Cu–In).


Результаты исследований фотовольтаического эффекта для типичных структур на основе ZCIS-пленок, полученных селенизацией двух типов исходных пленочных структур: стекло/ZnSe/(Cu-In) и стекло/(Zn-Cu-In), приведены в табл. 2. Видно, что максимальная вольтовая фоточувствительность S_U^m , которая всегда реализуется при освещении полученных поверхностно-барьерных структур со стороны барьерного контакта, изменяется в пределах 3 порядков и в лучших структурах достигает $S_U^m = 1380 \, \text{B/BT}$ при $T = 300 \, \text{K}$. Эта величина оказывается существенно выше, чем в структурах аналогичного

типа на $Z_{n_2-2x}Cu_xIn_xSe_2$ -пленках, которые выращены импульсным лазерным испарением гомогенных объемных кристаллов аналогичного состава [11]. Наблюдаемый широкий диапазон изменения величины S_U^m в полученных структурах следует, по-видимому, связывать с изменениями в составе пленок (табл. 1), структуре пленочных систем до селенизации и т.д. Этот вопрос достаточно сложен и нуждается в проведении подробных исследований взаимосвязи технологии со свойствами выращенных пленок.

Спектры относительной квантовой эффективности фотопреобразования $\eta(\hbar\omega)$ типичных структур In/p-ZCIS для двух использованных в работе вариантов подготовки исходной для селенизации пленочной системы компонент на стеклянной подложке приведены на рис. 2 и 3, а в табл. 2 дан ряд фотоэлектрических параметров этих структур и полупроводников, на которых такие структуры изготовлены.

Главные итоги исследования полученных структур In/p-ZCIS состоят в следующем. Исследованные два различающихся способа подготовки исходных для селенизации пленок на стекле не вносят существенных различий в характер спектральных зависимостей фоточувствительности полученных структур (рис. 2 и 3). Видно, что при освещении структур со стороны барьерного контакта фоточувствительность резко возрастает при энергии фотонов $\hbar\omega > 0.90 - 0.95$ эВ. Это возрастание вплоть до энергий $\hbar\omega'$ следует экспоненциальному закону и характеризуется высокой крутизной $S = \frac{S(\ln \eta)}{S(\hbar \omega)} = 30 - 40 \ \mathrm{gB}^{-1},$ что на основании [13,14] позволяет высказать предположение о прямых межзонных оптических переходах в тонкопленочных четверных фазах, атомный состав которых приведен в табл. 1. Отклонения от экспоненциального закона в спектре $\eta(\hbar\omega)$ наступают при энергии фотонов $\hbar\omega'$, которая указана в табл. 2 и стрелками на рис. 2 и 3. Полная ширина спектров $\eta(\hbar\omega)$ на полувысоте $\delta_{1/2}$ свидетельствует о широкополосном спектре процессов фотопреобразования в барьерах на основе полученных поликристаллических пленок. Для лучших структур $\delta_{1/2} \approx 2.5 \, \mathrm{эB}$ (табл. 2). Максимальное значение относительной квантовой эффективности фотопреобразования в лучших структурах реализуется также в широком спектральном диапазоне (в табл. 2 представлено величной $\hbar \omega^m$). Из рис. 2 и 3 хорошо видно, что высокая фоточувствительность в барьерах на полученных селенизацией фазах проявляется в широкой спектральной области от 1.3 до 3.6 эВ, что существенно превосходит аналогичные данные для структур, в которых использованы пленки, полученные лазерным испарением [11]. Это обстоятельство, на наш взгляд, свидетельствует о более высоком совершенстве тонких пленок $Z_{n_2-2x}Cu_xIn_xSe_2$, полученных селенизацией.

Из рис. 2 и 3 (кривые 2) также хорошо видно, что при переходе к освещению барьеров Шоттки со стороны тонкой полупроводниковой пленки спектры $\eta(\hbar\omega)$ становятся узкоселективными. При этом $\hbar\omega^m \approx \hbar\omega'$ и $\delta_{1/2} \approx 0.15-0.25$ эВ у разных структур. Резкий коротковолновой спад фоточувствительности структур связан с

Рис. 4. Зависимости $(\eta\hbar\omega)^{1/2}=f(\hbar\omega)$ — кривые 1–3 и $(\eta\hbar\omega)^2=f(\hbar\omega)$ — кривые 4–6 для структур In/p-ZCIS при T=300 К. Образец 3Z5.1 — кривые 1 и 4, образец 3Z4.1 — кривые 2 и 5, 1ZK28 — кривые 3 и 6.

наступлением сильного оптического поглощения в пленках с приближением к $\hbar\omega'$, что связано с началом прямых межзонных оптических переходов. По этой причине слой фотогенерированных пар удаляется от активной области структур, что и приводит к появлению резкого коротковолнового спада η при $\hbar\omega > \hbar\omega'$ в такой геометрии фоторегистрации. Анализ спектров $\eta(\hbar\omega)$ полученных структур показал, что их длинноволновая часть подчиняется характерному для барьеров Шоттки закону Фаулера $(\eta\hbar\omega)^{1/2}=f(\hbar\omega)$ (рис. 4, кривые I–3) [15]. Из экстраполяции этих зависимостей $(\eta\hbar\omega)^{1/2}\to 0$ определена высота потенциального барьера φ_b (табл. 2).

Коротковолновая часть спектров относительной квантовой эффективности фотопреобразования в исследованных структурах, как видно из рис. 4 (кривые 4–6), уже следует квадратичной зависимости $(\eta\hbar\omega)^2=f(\hbar\omega)$ и поэтому может быть приписана прямым мезжонным переходам [15,16], как и для соединения CuInSe₂ [2]. Экстраполяция типа $(\eta\hbar\omega)^2\to 0$, как видно из рис. 4 (кривые 4–6), дает значение энергии отсечки, которое в свою очередь, согласно [15,16], позволяет определить ширину запрещенной зоны E_g^d пленок Zn₂–₂ $_x$ Cu $_x$ In $_x$ Se₂, выращенных в процессе селенизации (табл. 2). Посколь-

ку диапазон концентраций Zn в полученных селенизацией пленках ZCIS (табл. 1) весьма ограничен, он не дает возможности анализовать зависимость ширины запрещенной зоны E_g^d от состава пленок. Можно только отметить, что в полученных пленках намечается тенденция к возрастанию величины E_g^d по отношению к позиционноупорядоченному соединению CuInSe2 с близким к его стехиометрии составом [2,17]. Важно также подчеркнуть, что максимальные значения $E_g^d \approx 1.27$ эВ (табл. 2) полученных селенизацией пленок ZCIS оказываются близкими к используемым в солнечных элементах слоям Cu(In,Ga)Se2 с максимальной на данный период эффективностью фотопреобразования [17].

4. Заключение

Тонкие пленки $Zn_{2-2x}Cu_xIn_xSe_2$ выращены двухступенчатым температурным отжигом в смеси паров селена и инертного газа (N_2) . Разработанные режимы селенизации подготовленных двумя различными методами исходных структур стекло/ZnSe/(Cu-In) и стекло/(Zn-Cu-In) обеспечили получение ZCIS-слоев халькопиритной структуры толщиной 1.0-2.0 мкм и р-типа проводимости. На основе полученных таким методом пленок $Zn_{2-2x}Cu_xIn_xSe_2$ созданы тонкопленочные поверхностно-барьерные фоточувствительные структуры In/p-ZCIS. Выполненные исследования обнаружили возможность применения полученных структур для создания широкополосных фотопреобразователей неполяризованного излучения, длинноволновая граница фоточувствительности которых может контролироваться технологическими параметрами процесса получения тонких пленок $Zn_{2-2x}Cu_xIn_xSe_2$.

Работа выполнена при финансовой поддержке проекта ISTC B-1029, гранта INTAS 2001-283 и программы ОФН РАН "Новые принципы преобразования энергии в полупроводниковых структурах".

Список литературы

- [1] Н.А. Горюнова. Химия алмазоподобных полупроводников (Л., Изд-во ЛГУ, 1963).
- [2] J.L. Shay, J.H. Wernick. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Oxford-N.Y.-Toronto-Sidney, Pergamon Press, 1975).
- [3] H.W. Schock, R. Noufi. Progr. Photovolt., 39, 151 (2000).
- [4] U. Rau, H.W. Schock. Series on Photoconversion of Solar Energy, 1, 277 (2001).
- [5] K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.A. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda. Progr. Photovolt. Res. Appl., 11, 225 (2003).
- [6] B.M. Basol, V.K. Kapur. Proc. 21st IEEE Photovoltaic Specialists Conf. (IEEE, N.Y., 1990) p. 546.
- [7] T. Wada, T. Megami, M. Nishitani. Jpn. J. Appl. Phys., 32, Suppl. 32-2, 41 (1993).
- [8] A. Gupta, T. Ohno, T. Karia, S. Shirakata, S. Isomura. Jpn. J. Appl. Phys., 32, Suppl. 32-3, 74 (1993).

- [9] В.Ф. Гременок, Е.П. Зарецкая, О.Н. Сергеева, В.Н. Пономарь, В.В. Цыбульский, В.А. Ухов. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 7, 45 (2004).
- [10] V.F. Gremenok, W. Schmitz, I.V. Bodnar, K. Bente, Th. Doering, G. Kommichau, I.A. Victorov, A. Eifler, V. Riede. Jpn. J. Appl. Phys., 39, Suppl. 39-1, 277 (2000).
- [11] В.Ю. Рудь, Ю.В. Рудь, Р.Н. Бекимбетов, В.Ф. Гременок, И.В. Боднарь, Л.В. Русак. ФТП, 34, 576 (2004).
- [12] Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM (Philadelphia, PA, 1998).
- [13] В.Ю. Рудь, Ю.В. Рудь. ФТП, **31**, 1336 (1997).
- [14] V.Yu. Rud', H.W. Schock. Sol. St. Phenomena, 67/68, 391 (1999).
- [15] С. Зи. Физика полупроводниковых приборов (М., Мир, 1984) т. 2, с. 270. [Пер. с англ.: С.М. Sze. *Physics of Semiconductor Devices* (N.Y.-Chichester-Brisbane-Toronto, A Wiley-Interscience Publication John Wiley & Sons, 1981) v. 2].
- [16] Ю.И. Уханов. Оптические свойства полупроводников (М., Наука, 1977).
- [17] В.Ю. Рудь, Ю.В. Рудь, В.Ф. Гременок, Г.А. Ильчук. Письма ЖТФ, 30 (18), 21 (2004).

Редактор Л.В. Беляков

Photoelectric properties of surface-barrier structures based on $Zn_{2-2x}Cu_xIn_xSe_2$ films obtained by a selenization process

V.Yu. Rud'*, Yu.V. Rud', V.F. Gremenok[†], E.P. Zaretskaya[†], O.N. Sergeeva[†]

loffe Physicotechnical Institute,
Russian Academy of Sciences,
194021 St. Petersburg, Russia
* St. Petersburg State Polytechnic University,
195251 St. Petersburg, Russia
† Institute of Solid State and Semiconductor Physics,
National Academy of Sciences of Belarus,
220072 Munsk, Belarus

Abstract $Zn_{2-2x}Cu_xIn_xSe_2$ (ZCIS) polycrystalline thin films by $1.0-2.0\,\mu m$ thickness with p-type conductivity were prepared by the selenization process in the first time. Photosensitive In/p-ZCIS surface-barrier structures were created on films. Quantum efficiency spectra of these structures prepared by the selenization of ZnSe/(Cu-In) and (Zn-Cu-In) original films have been investigated. The optical band gap of $Zn_{2-2x}Cu_xIn_xSe_2$ films was determined. In this was one can conclude that the films obtained are promising in fabricating broadband photoconvertors of natural radiation.