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Graphene is a material for unique nanostructures that

are regarded, by analogy with solids, as continuous media.

The parameters of such media are characterized within

the theory of elasticity: Young’s modulus, Poisson’s ratio,

torsional angle, strain tensor, stress tensor, etc. These

mechanical characteristics of graphene may be used in the

design of various sensors. For example, its weak resistance

to bending may help construct highly sensitive pressure

sensors.

Surface potential is one of the effects manifested in

nanoparticles. The possibility of application of the surface

potential, which allows one to study the influence of

curvature in the context of low-dimensional systems, in

quantum mechanics has garnered recent interest. Physical

effects induced by surface curvature in the presence of an

external magnetic field were investigated in [1–3] based on

the Schrödinger equation for a spinless electron gas. In [1,2],
a spinless electron gas was confined by a two-dimensional

localized cone surface; in [3], position-dependent mass

effects were examined in the case of electronic transport

in curved two-dimensional quantum systems (the formalism

was applied to deformed nanotubes).

In the present study, the free energy of a twisted

nanoribbon due to elastic deformations is determined. The

two-dimensional Schrödinger equation is used to analyze

the influence of the surface potential on the free energy

of a twisted nanoribbon, which in turn suppresses torsional

oscillations of the nanoribbon. The results of mathematical

modeling and numerical calculations based on theoretical

data are presented.

According to [4], the expression for surface potential

energy in a three-dimensional curvilinear coordinate system

R(q1, q2q3) = r(q1, q2) + q3N̂(q1, q2) (1)

takes the form

VS = − ~
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where me is the electron mass; VS depends on purely

geometric parameters of two-dimensional surface r(q1, q2);
N̂(q1, q2) is a unit normal to the surface at the point in

question; and R(q1, q2q3) is the radius vector of points

in a small neighborhood of the examined surface. In (2),
f =

√
G/g; G and g are the determinants of metric tensors

Gi j = (∂R/∂qi)(∂R/∂q j ) and gαβ = (∂r/∂qα)(∂r/∂qβ), re-
spectively; dS =

√
gdq1dq2 is the elementary area of a two-

dimensional surface; dV =
√

Gdq1dq2dq3 is the elementary

volume; and λ1 and λ2 are the principal curvatures specify-

ing mean curvature M and Gaussian curvature K [5] of the
surface and are the solutions of equation [5,6]

∣∣∣∣∣
b11 − λg11 b12 − λg12

b21 − λg21 b22 − λg22

∣∣∣∣∣ = 0. (3)

In (3), metric tensor gαβ of a two-dimensional surface

and second-rank tensor of dimension two bαβ are the first

and second quadratic forms [5], respectively. According

to [4], surface potential VS in (2) emerges as a result

of decomposition of term [−~
2/(2me)]1 in the three-

dimensional Schrödinger equation into a surface part for q1,

q2 and a normal part for q3 (1 is the three-dimensional

Laplace operator). In passing to the two-dimensional

Schrödinger equation (two-dimensional surface), surface

potential VS arises out of the fact that the two-dimensional

Laplace operator gets corrected by δ1⊥ = −(λ1 − λ2)
2/4.

It follows from (2) that the surface potential at any point

37



38 S.N. Skryabin, Y.A. Petrova, N.R. Sadykov

on a surface is always either negative or equal to zero.

This implies that the introduction of this term into the two-

dimensional Schrödinger equation results in lowering of the

energy level of stationary states. Since the deformation of

a surface by elastic forces (by analogy with elastic forces

in deformation of metal plates) raises the potential energy

of plates, surface potential VS from (2) competes with

transverse elastic deformations. This effect is especially

strong when principal curvatures λ1 and λ2 of a surface

differ significantly (e.g., when λ2 = 0 (cylinder) or λ1 = −λ2
(helicoid)).
Using the first gαβ and second bαβ quadratic forms in

the helicoidal coordinate system given in [7] and taking into

account the surface potential for particles characterized by

the Schrödinger equation [4,8,9], we obtain an equation for

the wave function of a particle in a longitudinal electric

field W :

− ~
2

2me

[
∂2

∂(q1)2
+

κ2q1

1 + (κq1)2
∂

∂q1
+

κ2

[1 + (κq1)2]2

]
9

− ~
2

2me [1 + (κq1)2]

∂2

∂(q2)2
9 = (E − EF + |e|W q2)9. (4)

In the present study, we examine narrow long armchair-

edge graphene nanoribbons (N-AGNR) with a stag-

gered configuration (Fig. 1), where N = 11 [10,11]. At

κq1
max ≪ 1, nanoriboon width H = m

√
3b ≈ 1.23 nm for

m = (N − 1)/2 = 5 (b = 0.142 nm is the distance between

carbon atoms in graphene), and helicoidal nanoribbon

period L = 10H , we obtain [1 + (κq1
max)

2] ≈ 1.05, where

q1
max = H/2, κL = 2π. Therefore, Eq. (4) may be approx-

imately solved numerically by the method of separation

of variables 9 = 81(q1)82(q2) with boundary conditions

82(q2 = ±5L) = 0, 81(q1 = ±5H) = 0:

∂2

∂(q2)2
82 = −2me

~2
(E − E1 + |e|W q2)82,

[
∂2

∂(q1)2
+

κ2q1

1 + (κq1)2
∂

∂q1
+

κ2

[1 + (κq1)2]2

]
81

= −2me

~2
(E1 − EF)81, (5)

where L and H are the length and width of a nanoribbon

and E are the energy levels of stationary states, which

include the energy levels in longitudinal (E − E1) and

transverse (E1 − EF) directions. The solution for function

82 from the first equation in (5) may also be expressed in

terms of Airy functions Ai(ζ ) and Bi(ζ ) [12,13].
Let us now determine the influence of the surface

potential on free energy F̃ of a twisted nanoribbon. The

value of F̃ is the difference between the energy levels

of stationary states of twisted En(κ) and flat En(κ = 0)
nanoribbons:

F̃ ∼ 1E = [En(κ) − EF] − [En(κ = 0) − EF]

= En(κ) − En(κ = 0).

Staggered Symmetric

Figure 1. Images of armchair-edge nanoribbons with staggered

and symmetric configurations.

Since the first equation for function 82 from system

(5) does not depend on torsional parameter κ, en-

ergy level difference 1E is governed by the magnitude

of energy level difference in the transverse direction

1E1 = E1,n(κ) − E1,n(κ = 0) for function 81 from (5):

F̃ = F̃L = [4HL/(3
√
3b2)]1E ≈ [4HL/(3

√
3b2)]1E1, (6)

where 1E ≈ 1E1 < 0 and the expression in square brackets

defines the number of carbon atoms in a nanoribbon. Since

the second and third terms in square brackets in (5), which

act as a perturbation operator, are proportional to κ2, energy

correction 1E1 is also proportional to κ2.

Let us now determine the free energy of a twisted

nanoribbon due to elastic deformations in the case when this

nanoribbon is approximated by a long narrow thin elastic

plate with its elastic parameters being well known [14–16].
To do this, we apply the theory of deformation of thin rods

with a rectangular cross section to nanoribbons [17]. In the

case of torsional deformation, a rod remains straight, but

each cross-section is rotated relative to the underlying ones

by angle dϕ = τ dz , where τ is the torsional angle. The

torsional deformation itself (i.e., relative displacements of

adjacent sections of the rod) is assumed to be small. This is

achieved if the relative rotation of cross sections separated

longitudinally by distances on the order of transverse

dimensions R of the rod is small; i.e., τ R ≪ 1. Let us

introduce components ux , uy of the displacement vector and

strain uik and stress σi j tensors:

ux = −τ z y, uy = τ z x , uz = τ ψ(x , y),

uik =
1

2
(∂ui/∂x k + ∂uk/∂x i ), (7)

σi j =
E

1 + σ

(
ui j −

1

3
ullδik

)
+ ullδikK

=
E

1 + σ

(
ui j +

σ

1− 2σ
ullδik

)
, (8)

Technical Physics Letters, 2024, Vol. 50, No. 8



Wave Functions and Energy Levels Taking into Account the Surface Potential... 39

where ψ(x , y) is the torsional function and ull = 0 is pure

shear deformation. In the case of a thin plate, the non-

zero components are σxz , σyz [17], which may be expressed

through auxiliary function χ(x , y):

σxz = 2µτ
∂χ

∂y
, σyz = −2µτ

∂χ

∂x
, (9)

where µ = E/[2(1 + σ )] is the shear modulus. With (9)
taken into account, we find the equation for function χ

1χ = ∂2/∂x2 + ∂2/∂y2 = −1. (10)

The free energy of mechanical deformations (F) per unit

volume of a twisted rod is

F =
σi j uik

2
=

1

2µ

[
(σxz )

2 + (σyz )
2
]

= 2µτ 2(grad χ)2.

(11)
Torsional rigidity C of the rod provides an opportunity to

define torsional energy (free energy) F without including

the surface potential

F = L
∫

Fd f = LCτ 2/2,

C = 4µ

∫
(grad χ)2d f =

µHa3

3
, (12)

where integration is performed over the cross-sectional area

of the rod.

With the surface potential taken into account, the equa-

tion for torsional vibrations of a nanoribbon is written as

∂2ϕ

∂t2
=

C + Cs p

ρI
∂2ϕ

∂z 2
, Cs p = −

[
8H

3
√
3b2κ2

]
1E,

vs p =

√
C + Cs p

ρI
, ωs p =

πvs p

L
, (13)

C =
2F

Lτ 2
≈ 6.84 · 10−28 J ·m, (C + Cs p)/C = 0.7,

(14)
where torsional rigidity C is calculated for nanoribbon thick-

ness a = 0.154 nm; Cs p — parameter that characterizes

the effect of the surface potential on the rod oscillation

frequency.

The data on evolution of the total energy of systems

examined in [18] reveal complete structural and energetic

stability and confirm that these systems are highly flexible

and may remain intact at relatively high temperatures,

demonstrating their remarkable thermal stability. The

analysis of electronic properties of nitrogen-containing

carbon nanoribbons composed of 4−5−6−8-membered

rings revealed that the studied systems are direct-band-

gap semiconductors in nature. The estimated band gap

was 1.12 eV, which is lower than the value of 1.4 eV

measured experimentally in [19] for the C52 system. Fixed

thickness and width values of these nanoribbons were

adopted in the study (3.35 and 11.75 Å respectively). The

predicted elastic moduli of systems C52, C48N4-1, C48N4-

2, C44N8, and C40N12 were 534, 500, 510, 473, and

493 GPa, respectively. The used approximation of a

carbon nanoribbon by rods with a rectangular cross-section

(directional chemical bonds are disregarded) is simplified

compared to [18]. However, since the geometric dimensions

of nanoribbons and the predicted elastic moduli of systems

in [18] correspond to the values used here, a qualitative

agreement between the theoretical results obtained and the

actual parameters of nanoribbons is perfectly possible. The

slight difference between the elastic modulus used in the

present study and the data from [18] may be attributed to

the fact that a carbon nanoribbon is more homogeneous

than the nanoribbons examined in [18] (a more accurate

approximation of nanoribbons by rods with a rectangular

cross-section).
A series of numerical calculations were carried out to

determine the energy level of stationary states and wave

functions in the transverse 81(q1) and longitudinal 82(q2)
directions of a nanoribbon from Eqs. (5). The profile of a

shallow potential well in the transverse Utr and longitudinal

Ulon directions was considered in these calculations:

Utr =

{
EF, |q1| 6 H/2,

0, H/2 < |q1| 6 5H,
(15)

Ulon =

{
E1 − |e|W q2, |q2| 6 L/2,

−|e|W q2, L/2 < |q2| 6 5L,
(16)

where EF = −6.4 eV and quantity E1 was defined in (5).
Calculations were performed on the basis of an algorithm

for determining the eigenvalues and eigenfunctions of

stationary states, which implements the method of inverse

iterations [20] (or the modified Wielandt method [21]).
Similar numerical algorithms were implemented in [22–24].
Table 1 presents calculated energy levels of stationary

states E1 = E1,n(κ) in the transverse direction for a potential

well with profile (15) and energy levels of stationary states

E = En(κ) in the longitudinal direction for a potential well

with profile (16). Figure 2 shows the dependence of

the normalized functions of states in an armchair-edge

nanoribbon. The data in Fig. 2, a correspond to the

dependence of wave functions in the transverse direction

on q1 when the first boundary condition is satisfied at

q1 = ±5H and the potential well profile is given by (15). It
can be seen from Fig. 2, a that the probability density outside

a nanoribbon at |q1| > H/2 is greater than zero. The data

in Fig. 2, b correspond to the dependence of wave functions

in the longitudinal direction on q2 when the first boundary

condition is satisfied at q2 = ±5L and the potential well

profile is given by (16). It can be seen from Fig. 2, b that

the probability density outside a nanoribbon at q2 > L/2 is

virtually equal to zero.

The variation of the total free energy with nanoribbon

thickness is detailed in the first row of Table 2. The

second and third rows present the variations of velocity

and frequency of torsional oscillations of the fundamental

Technical Physics Letters, 2024, Vol. 50, No. 8



40 S.N. Skryabin, Y.A. Petrova, N.R. Sadykov

Table 1. Energy levels of stationary states E1 = E1,n(κ) in the transverse direction and E = En(κ) in the longitudinal direction for

potential wells with profiles (15) and (16)

State

Energy levels in the longitudinal Energy levels in the transverse direction

direction (Fig. 2, b) (Fig. 2, a)

number
Flat AGNR, Helicoidal AGNR, Flat AGNR, Helicoidal AGNR,

n
En(κ = 0), eV En(κ), eV E1,n(κ = 0), eV E1,n(κ), eV

1 −6.2297 −6.2440 −6.2039 −6.2182

2 −6.2024 −6.2166 −5.6186 −5.6418

3 −6.1800 −6.1942 −4.6538 −4.6671

4 −6.1597 −6.1740 −3.3317 −3.3545

5 −6.1386 −6.1528 −1.7062 −1.7183

6 −6.1132 −6.1275 −0.0479 −0.0645
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Figure 2. Dependences of normalized state functions in a nanoribbon. a — dependence of wave functions in the transverse direction

on q1 (H = 1.23 nm), where |q1| 6 5H . b — dependence of wave functions in the longitudinal direction on q2 (L = 12.3 nm), where
|q2| 6 5L. Dashed vertical lines correspond to nanoribbon edges and ends q1 = ±H/2 and q2 = ±L/2, respectively. Solid curves and

dashed curves with different symbols correspond to twisted and flat (κ = 0) nanoribbons, respectively.

Table 2. Calculation of total free energy F + Fs p and propagation

velocity vs p and cyclic frequency ωs p of torsional oscillations of the

fundamental mode of a helicoidal wave as functions of nanoribbon

thickness a

Parameter
a/b

1.153 1.155 1.16 1.2 1.5 2

F+Fs p, eV ∼ 0 0.04 0.15 1.06 10 35.1

vs p, m/s 4.4 195.9 361.5 947.7 2909.1 5450.3

ωs p,10
11 s−1 0.011 0.5 0.92 2.42 7.43 13.92

mode of a helicoidal wave (determined with account for the

surface potential) with nanoribbon thickness.

Figure 3 shows the dependences of the propagation

velocity and the cyclic frequency of torsional oscillations of

the fundamental wave mode on the value of a/b. Curves 1
in Fig. 3 correspond to the case when only the energy of

elastic deformations is taken into account. Curves 2 were

plotted with the energy of both elastic deformations and

surface potential taken into account.

Thus, it follows from the obtained results that quantity

C + Cs p may assume a zero value. Velocity vs p and

frequency ωs p are also zero in this case. This implies that

an elastic thin narrow nanoribbon is transformed, in terms

of its elastic properties, into a strip of fabric (i.e., the elastic

properties of the nanoribbon vanish completely). Condi-

tion C + Cs p = 0 is fulfilled at a/b ≈ 1.1513, where the

frequency of torsional vibrations corresponds to microwave

radiation with wavelength λ = 1.67m. The oscillation

frequency may be reduced by increasing the width and

length of a nanoribbon, but the influence of the surface

potential on the examined effect is then suppressed. It

Technical Physics Letters, 2024, Vol. 50, No. 8
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Figure 3. Dependences of the propagation velocity (upper panel) and the cyclic frequency (lower panel) of torsional oscillations of

the fundamental wave mode on the value of a/b. Since velocity v is proportional to frequency ω, the functional dependences of these

quantities agree qualitatively.

should be stressed that torsional rigidity C was calculated in

the present study for nanoribbon thickness a = 0.154 nm

(a/b = 1.085) corresponding to the data for graphene

nanoribbons, while the nanoribbon thickness in [18] was

a = 0.335 nm (i.e., a/b = 2.36). At a/b = 2.36, torsional

oscillation frequency ωs p approaches a stationary value;

i.e., a nanoribbon does not collapse. But even though

a nanoribbon does not collapse, the torsional rigidity

decreases. The latter factor may prove to be significant

in experimental research into the effects associated with the

Young’s modulus value in nanostructures.

It follows from the obtained results that the geometric

potential may influence the nature of motion of charge car-

riers in elongated nanoparticles (nanotubes, nanoribbons).
This issue is relevant to chiral spintronics [25–29]. The

influence of the geometric potential will manifest itself in

non-axisymmetric motion of particles in nanotubes, which

translates into the influence of the geometric potential on

the spin-orbit interaction magnitude [23]. In turn, the spin-

orbit interaction lifts spin degeneracy in nanotubes (Rashba
effect). The shift of energy levels in twisted nanoribbons

should affect the transmission coefficient.
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