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Suppression of the flow instability by random fluctuations

of the rotational velocity
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The possibilities of suppression of the flow instability in a spherical gap by the noise — random fluctuations

of the internal sphere rotation velocity in time — have been investigated experimentally. Fluctuations with zero

mean value were added to the constant mean rotation velocity. It is found that noise can suppress instability in the

form of running azimuthal waves, with a transition to a long-lasting stationary flow after the noise is turned off.

Significant differences were found in the interaction of azimuthal modes in suppressing instability by periodic and

random in time fluctuations of rotation speed.
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Much attention is currently being paid to the study of

methods for suppressing instabilities in various physical

processes [1–5]. Flows may be stabilized under the

influence of a magnetic field [2,3], acceleration in a shear

flow [4], and distributed injection [5]. Suppression of

hydrodynamic instability in flows with rotation may be of

use in technological processes (e.g., growth of crystals from

liquid melt by the Czochralski method [6,7]). In this case,

instability suppression provides an opportunity to rectify the

heterogeneity of the crystallization front and, consequently,

make the structure of single crystals more homogeneous [8].
The possibilities of suppressing the instability of flows with

rotation were investigated numerically [6,7]. Impulse [6] and
resonant [7] methods for controlling the rotation velocity,

the mean value of which was maintained at a constant

level, were used. The same condition was fulfilled in

experiments on instability suppression in a spherical Couette

flow (SCF) under the influence of time-periodic modulation

of the rotation velocity of the internal sphere [9]. SCF is a

flow of viscous incompressible fluid that forms in a gap

between coaxially located spheres under the influence of

their rotation. In SCF, periodic modulation of the rotation

velocity [10] and noise in the form of random fluctuations

with zero mean [11,12] may induce the same effects

(e.g., mean flow generation). Suppression of instability

by periodic modulation has already been observed in

experiments [9], but it remains unclear whether instability

suppression by noise is possible. The aim of the present

study is to clarify this issue.

Flow was induced by rotation of the internal sphere

only. Noise was added to its constant angular velocity

�0 in the form of fluctuations random in time with zero

mean. Consequently, it spreads throughout the entire

flow. The spheres are optically transparent; the radius of

the internal one is r1 = 0.075m, and the radius of the

external sphere is r2 = 0.150m. The gap is filled with

silicone oil with kinematic viscosity ν = 5 · 10−5 m2/s at

an oil temperature of 22◦C. Aluminum powder was added

to the oil in order to visualize the flow. The spheres

were introduced into an optically transparent thermostat.

The oil temperature in it was maintained constant in each

experiment (with an accuracy of ±0.05◦C) and measured

with a sensor positioned at the equator of the external

sphere. Azimuthal component uϕ [m/s] of the flow velocity

was measured with a laser anemometer at mid-latitudes at

a point located 0.078m away from the equatorial plane

and 0.105m away from the rotation axis. The time-

averaged value of the set angular velocity of rotation was

maintained by a digital control system with an error no

greater than 0.02%. A rotation velocity sensor on the

drive shaft produced a phase signal. Instantaneous angular

velocity values were calculated as a time derivative of the

phase signal and compared with the set value to generate

an actuating signal for the drive. Noise was produced by

adding normalized disturbances from by a random number

generator to the velocity signal. In accordance with the

results reported in [11], noise inducing the greatest change

in flows was chosen (white noise in the frequency range

from 0.01 to 1Hz); at higher frequencies, exponential

amplitude decay is observed in the spectrum (see Fig. 2

in [11]). The time step of the control system was 0.04 s.

To obtain the required noise spectrum, rotation velocity

disturbances were induced at every tenth step. The limit

values of disturbance amplitude are determined by the limit

acceleration that is related to the change in rotation rate

�(t)/2π (0.2 s−2). Dimensionless noise amplitude N was

defined as N = 1
�0

√

1
K−1

K
∑

i=1

(

�(ti ) −�0

)2
, where �(ti ) is

the instantaneous rotation velocity value and K is the time

sample length.

A wide variety of instability types may be observed

in SCF: when only the internal sphere rotates, instability

89



90 D.Yu. Zhilenko, O.E. Krivonosova

t, s

1000 30002000

4

3

2

1

–410

–210

A
f –310

a

4000

t, s

1000 30002000

4

3

2

1

–410

–210

A
f

–310

t, s

1000 30002000

4

3

2

1

–410

–210

A
f

–310

b

c

Figure 1. Dependences of internal sphere rotation rate �1(t)/2π [Hz] (1), measured flow velocity uϕ(t) [m/s] (2), and amplitudes A f (t)
[m/s] of initial mode m = 3 (blue curves 3) and secondary mode m = 4 (red curves 4) on time t at Re1/Rec = 1.0046. a — N = 0.045,

b — N = 0.0648, and c — N = 0.0702. For clarity, dependences 1 and 2 are presented with an increased time interval between adjacent

points. Vertical dashed lines denote the moments of time when additional noise was turned on and off. Inclined dashed lines in panel a

represent exponential approximations of amplitude A f 3, and the vertical arrow indicates the moment of decrement change. A color version

of the figure is provided in the online version of the paper.

develops, depending on layer thickness δ = (r2 − r1)/r1,
in the form of either stationary Taylor vortices or run-

ning azimuthal waves [13]. In the layer with thickness

δ = 1 examined in our experiments, unstable flow as-
sumes, depending on the initial conditions, the form of

running azimuthal waves with wave numbers m = 3 or

m = 4 [13] propagating in the direction of rotation of the

internal sphere. The frequencies of azimuthal modes are

f 3 = 0.3−0.32Hz and f 4 = 0.4−0.42Hz for m = 3 and

m = 4, respectively [13,14]. This is exactly the case in which

not only instability was suppressed in [9] via modulation

of the rotation velocity, but also flow stationarity was

maintained due to the interaction of azimuthal modes after
switching off the control input. Experiments were conducted

in accordance with the following procedure. Velocity �0

was first increased to levels at which Reynolds number

Re1 = (�0r21)/ν exceeded the critical value corresponding

to the flow stability limit: Rec = 460± 2 [13]. The value of

�0c/2π corresponding to critical Rec was kept constant dur-

ing each experiment and, depending on the oil temperature

in the layer, ranged from 0.6521 to 0.6582Hz. Experiments

were carried out at Re1/Rec = 1.0031 ± 0.0004 and, as

in [9], at Re1/Rec = 1.0046 ± 0.0004. As instability devel-
ops, the amplitudes of both modes increase. Then amplitude

of one of the modes (we call it the initial one) then reaches a

constant level. The amplitude of the other mode (secondary
one) decreases after reaching its maximum. The mode

choice is governed by past history of flow evolution [13] and
noise amplitude N [14]. The recording of uϕ measurements

began at the moment when the flow became unstable; this

moment and wave number m were determined from the

flow visualization. After this, noise was fed into the velocity
signal (in a stepwise manner, from zero to the chosen value).
The N value remained constant throughout the experiment

and fell within the 0.095 > N > 0.044 range. The duration

of exposure to noise (τ ) varied from 400 to 1500 s. If the

visualization and the nature of temporal variation of uϕ in

the experiment made it clear that instability was suppressed,
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Figure 2. Dependences of internal sphere rotation rate �1(t)/2π
[Hz] (1), measured flow velocity uϕ(t) [m/s] (2), and amplitudes

A f (t) [m/s] of initial mode m = 4 (red curves 3) and secondary

mode m = 3 (blue curves 4) on time t at Re1/Rec = 1.0046

and N = 0.0648. a — τ = 432 s; b — τ = 1210 s. For clarity,

dependences 1 and 2 are presented with an increased time interval

between adjacent points. Inclined dashed lines in panel a represent

exponential approximations of amplitude A f 4, and the vertical

arrow indicates the moment of decrement change. The horizontal

dashed line in panel b represents the mean amplitude of the initial

mode after turning off the noise. A color version of the figure is

provided in the online version of the paper.

noise was turned off. The recorded uϕ values were used

to determine the oscillation amplitudes of secondary flow

modes A f [9]: A f = |u f (t) + iHT
(

u f (t)
)

|, where HT is

the Hilbert transform and u f (t) is the result of filtering

of velocity signal uϕ(t) within frequency band f 3 ± 1 f
for m = 3 and f 4 ± 1 f for m = 4, 1 f = 0.005−0.01Hz.

The Hilbert transform allows one to determine the temporal

variation of the signal amplitude at a given frequency [15].

Figure 1 presents the scenarios of response of an unstable

flow with initial mode m = 3 to an increase in the noise

amplitude (N increases from Fig. 1, a to Fig. 1, c). When

N

0.005

0.010

0.06 0.080.05 0.090.07

1

2

3

l

Figure 3. Dependence of damping decrement λ [m/s2] on noise

amplitude N. 1 — Initial mode m = 3, Re/Rec = 1.0046; 2 —
initial mode m = 4, Re/Rec = 1.0046; 3 — initial mode m = 4,

Re/Rec = 1.0031.

noise is turned on, amplitude A f 3 of the initial mode starts

to decay exponentially; damping decrement λ does not

remain constant and decreases once (Fig. 1, a). If the

amplitude of the initial mode has exceeded the amplitude

of the secondary one within the entire interval in which

noise remained turned on, instability with the initial mode

is restored (Fig. 1, a). There is a certain time interval in

Fig. 1, b within which A f 3 ≈ A f 4. When noise is turned

off, both modes start to grow, and m = 3 is replaced by

m = 4. Note that the latter mode is dominant in the case of

stationary rotation [13,14]. In Fig. 1, c, condition A f 3 ≈ A f 4

is satisfied within the greater part of the interval in which

noise is turned on. When noise is turned off, the amplitudes

of both modes do not increase, remain close in magnitude,

and flow instability remains unrestored for a long time.

Suppression of flow instability may be induced not only

by an increase in N, but also by an increase in τ at the

same level of N. This is illustrated in Fig. 2 for initial

mode m = 4. Just as in the scenario presented in Fig. 1, a,

the initial mode exceeds the secondary one when noise is

turned on, and instability is restored after turning off the

noise (Fig. 2, a). Damping decrement λ also does not remain

constant and decreases at the moment when the secondary

mode is maximized. As in the scenario presented in Fig. 1, c,

an increase in τ (Fig. 2, b) leads to the equalization of

mode amplitudes, and instability remains unrestored for

a long time after turning off the noise. Three sections

may be distinguished in the time dependence of A f 4. The

first one is exponential decay with constant λ. When the

amplitudes of two modes get equalized, ∂A f 4/∂t decreases

(second section). In the third section, the average value

of A f 4 remains constant (indicated by the horizontal dotted

line in Fig. 2, b). In contrast to the scenarios presented in

Fig. 1, both scenarios in Fig. 2 involve a slight growth of the

secondary mode. The dependence of the maximum values

of damping decrement λ on N is shown in Fig. 3. At the
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same supercriticality, initial mode m = 3 decays faster than

m = 4 (curves 1 and 2). The greater the supercriticality is,

the faster the initial mode decays (m = 4, curves 2 and 3).
The presented data suggest that the convergence of

amplitudes of competing azimuthal modes is the reason for

both the suppression of instability by noise and the long-

term retention of flow stationarity at supercritical values

of the Reynolds number after the termination of noise.

A similar result has been obtained earlier with periodic

modulation of the rotation velocity [9]. However, there are

certain differences. Specifically, periodic modulation led to

a noticeable increase in the flow velocity; the attenuation

of the initial mode (with a constant decrement) was

accompanied by a significant enhancement of the secondary

mode (see Fig. 1 in [9]). Long-term retention of stability

after switching off the modulation was observed only for

initial mode m = 4 (see Fig. 2 in [9]). The above features

are not observed when noise is used. Specifically, the

decreasing damping decrement of the initial mode (Figs. 1, a
and 2, a) is indicative of enhancement of the interaction

between modes under the influence of noise [14], which

leads (at any initial mode) to the suppression of instability

by noise and to long-term retention of flow stability after

turning off the noise.

The suppression of instability by noise, which was

examined experimentally in the present work, is consistent

with the results obtained for other systems in both numerical

(suppression of instability of an inverted pendulum by

noise [16]) and experimental (elimination of instability in

a combustion chamber by added noise [17]) studies.
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