03.1;03.2

Гидравлическое сопротивление круглой трубы при течении жидкого металла в поперечном магнитном поле

© Н.А. Лучинкин¹, Н.Е. Балабаев², Л.А. Федосеев¹, Е.М. Шенягин², И.А. Беляев²

¹ Национальный исследовательский университет "МЭИ", Москва, Россия ² Объединенный институт высоких температур РАН, Москва, Россия E-mail: bia@ihed.ras.ru

Поступило в Редакцию 5 июня 2024 г. В окончательной редакции 5 июля 2024 г. Принято к публикации 12 июля 2024 г.

Рассмотрены результаты экспериментального исследования влияния поперечного магнитного поля на гидравлическое сопротивление при течении ртути в круглой трубе при различной проводимости стенки. Исследованы изменения коэффициентов гидравлического сопротивления при числах Рейнольдса в диапазоне $\text{Re} = (10-40) \cdot 10^3$ и магнитных полях, реализующих числа Гартмана в диапазоне Ha = 0-1800. Рассмотрены трубы с различной толщиной стальной стенки, изучено влияние омеднения, направленного на улучшение электрического контакта на границе ртуть-сталь.

Ключевые слова: магнитная гидродинамика, гидравлическое сопротивление, жидкий металл, проводимость стенки, контактное электросопротивление.

DOI: 10.61011/PJTF.2024.21.58960.20012

Частью развития реакторных установок чистого синтеза (термоядерных реакторов) и гибридных систем (синтез-деление) [1] является использование жидких металлов для охлаждения высоконагруженных элементов реакторов и наработки ядерного топлива, применение которых сопряжено с различными трудностями и явлениями, изученными еще недостаточно подробно [2]. Один из эффектов — возрастание гидросопротивления каналов при течении проводящей среды в сильных магнитных полях. Данные о гидросопротивлении при течении жидкого металла в поперечном магнитном поле для каналов с различной проводимостью стенок приводятся в нескольких источниках [3–6].

Исследования жидкометаллического теплообмена, осложненного влиянием магнитного поля, показывают, что не только гидросопротивление, но и теплообмен (включая возникновение магнитно-конвективных пульсаций) оказывается чувствительным к электрической проводимости стенки [2]. Основные данные получены в условиях лабораторных стендов с относительно слабой или практически отсутствующей проводимостью стенки [3]. При этом вопрос изменения электропроводности стенки на всем протяжении проводимых экспериментальных исследований подробно не оговаривается.

В настоящей работе решается задача об исследовании гидросопротивления в трубах с различной проводимостью стенки с подробным рассмотрением влияния электропроводности стенки, проверяется достоверность более ранних работ других авторов, отрабатывается методика измерения гидросопротивлений в жидких металлах и создается база надежных экспериментальных данных.

Реальный контакт ртути и нержавеющей стали имеет как термическое [7], так и электрическое [8] контактное сопротивление. Исследования показали, что контакт ртути и нержавеющей стали определяется посторонними к жидкому металлу слоями, образующимися в зоне контакта [8,9]. Возникновение этих слоев обусловлено химическим взаимодействием жидкометаллической среды с конструкционными материалами, а также электролитическими процессами при прохождении тока. В связи с этим протекание электрического тока через контактную зону происходит через множественные места пробоя пограничных контактных слоев. Механические воздействия на смоченную стенку (обработка щетками) и нанесение промежуточных слоев с лучшей смачиваемостью жидким металлом позволяют снизить контактное электрическое сопротивление.

Исследования проводились с помощью системы измерения перепадов давления (рис. 1). Система состоит из двух колб большого диаметра, заполненных водой, к которым подводятся шланги от отборов давления на рабочем участке. С ответных частей колб выводятся измерительные шланги, совмещенные с измерительной рулеткой. За счет разности внутренних диаметров колб $(d_1 = 72 \text{ mm})$ и шлангов $(d_2 = 6 \text{ mm})$ неразличимый перепад уровней по ртути вызывает существенный перепад уровней по воде, достаточный для проведения точных измерений даже при малых расходах. Перепад давлений вычислялся на основе следующего соотношения:

$$dP = \rho_W g H \left(\frac{\rho_{\rm Hg}}{\rho_W} \frac{d_2^2}{d_1^2} + 1 \right),\tag{1}$$

где ρ_W , $\rho_{\rm Hg}$ — плотности воды и ртути [kg/m³], g — ускорение свободного падения [m/s²], H — перепад

Рис. 1. Схема экспериментальной установки. *I* — экспериментальный рабочий участок, *2* — электромагнит, *3* — насос, *4* — теплообменник, *5* — электромагнитный расходомер, *6* — гаситель пульсаций воздушного типа, *7* — измеритель перепада давления.

уровней по воде $[m], d_1, d_2$ — диаметры колб и шлангов соответственно [m].

Далее коэффициент гидравлического сопротивления вычислялся по формуле

$$\xi = \frac{2DdP}{\rho_{\rm Hg}U^2L},\tag{2}$$

где D — внутренний диаметр трубы [m], U — средняя скорость потока жидкого металла [m/s], L — расстояние между отборами давления [m].

Для исследования влияния электрической проводимости стенок канала на гидросопротивление было изготовлено четыре рабочих участка, представляющих собой круглые трубы с внутренним диаметром 40 mm: две из них с толщиной стенки 2.5 mm и две с толщиной стенки 10 mm. Длина каждого из участков составляла 750 mm. Для улучшения контакта ртуть-сталь на паре труб (тонкостенная и толстостенная) применялось омеднение внутренних поверхностей. Толщина наносимого медного покрытия ~ 100 µm. В исследованиях использовалась ртуть марки P-1.

Магнитное поле воздействует на поток жидкого металла, подавляя турбулентность и делая поток ламинарным. Полученные экспериментальные данные и используемые асимптотики соответствуют ламинарному течению в сильном поперечном магнитном поле [4]. Известно, что для задачи гидравлического сопротивления проводящего канала коэффициент сопротивления зависит не от двух независимых параметров (числа Рейнольдса и Гартмана), а только от их комбинации — числа Стюарта [4].

Результаты измерений показаны в виде зависимостей коэффициента гидравлического сопротивления от безразмерного параметра — числа Стюарта N = Ha²/Re, где числа Рейнольдса (Re) и Гартмана (Ha) определяются как

$$\operatorname{Re} = \frac{UD}{\nu}, \qquad \operatorname{Ha} = BD\sqrt{\frac{\sigma}{\eta}}, \qquad (3)$$

где ν — кинематическая вязкость ртути [m²/s], *B* — индукция магнитного поля [T], σ — электропроводность ртути [Ω^{-1}], η — динамическая вязкость ртути [Pa · s].

На первом этапе исследовались тонкостенные участки $(40 \times 2.5 \text{ mm})$ с омеднением и без омеднения (рис. 2, *a*). Экспериментальные точки для трубы с омеднением расположены выше значений для неомедненной трубы, что дает возможность утверждать, что контакт ртуть-сталь улучшается. Для сравнения на рисунке представлены также расчетные зависимости коэффициента гидравлического сопротивления для каналов с идеально проводящими и полностью изолированными стенками [3]. Экспериментальные точки располагаются между этими кривыми и хорошо описываются зависимостью для стенок с конечной проводимостью [4]. Свойства нержавеющей стали 12Х18Н10Т взяты из работы [10], свойства ртути — из справочника [11]. Теоретическая зависимость для тонкостенной неомедненной трубы при значении относительной проводимости С_w = 0.044 хорошо описывает результаты эксперимента только в случае с омедненной стенкой. Результаты без омеднения описываются зависимостью со сниженной в 2.6 раза проводимостью ($C_w = 0.017$). Это свидетельствует о плохом электрическом контакте ртути и стали из-за плохого смачивания ртутью стенок канала.

На втором этапе проводились измерения с парой толстостенных труб (40 × 10 mm), одна из которых была омеднена (рис. 2, *b*). Значения гидросопротивления в толстостенных трубах оказываются выше значений для тонкостенных труб. Омеднение существенно улучшает контакт жидкости со стенкой. Теоретическая зависимость хорошо описывает полученные результаты при рассчитанном значении $C_w = 0.176$ в случае омедненной трубы. Без омеднения зависимость хорошо описывает экспериментальные точки только при сниженной в 6.5 раза относительной проводимости стенки (C_w снижается до 0.027), что указывает на плохой контакт жидкости со стенкой трубы.

В рамках настоящей работы также проводились исследования потери смачиваемости омедненной стенки с течением времени (рис. 3). Для этого ртуть выдерживалась в омедненной трубе длительное время, в течение которого периодически проводились измерения

Рис. 2. Гидравлическое сопротивление при течении жидкого металла в поперечном магнитном поле. a — тонкостенная круглая труба (40 × 2.5 mm), b — толстостенная круглая труба (40 × 10 mm). Re = $(10-40) \cdot 10^3$, Ha = 0-1800.

4

Рис. 3. Отклонение коэффициента гидросопротивления от данных первоначального измерения в зависимости от времени выдержки жидкого металла в контуре.

гидросопротивления. Результаты показали, что отклонение последующих замеров от первого выходит на постоянное значение и составляет $\sim 15\%$.

Таким образом, проведены экспериментальные измерения гидравлического сопротивления при течении жидкого металла в поперечном магнитном поле в круглых трубах с различной толщиной стенки для случаев с омеднением внутренней поверхности и без него. Эксперименты показали влияние толщины стенки и омеднения внутренней поверхности на контакт жидкость-стенка и на гидравлическое сопротивление. Полуэмпирические закономерности хорошо описывают полученные результаты в случае с омедненными трубами. Для случая с неомедненными стенками результаты занижены в 3-7 раз, и для корректного описания проводимости необходима экспериментально определяемая поправка к коэффициенту относительной проводимости. Полученные результаты дают возможность учесть эффект влияния плохой смачиваемости стенки на гидравлическое сопротивление жидкого металла в магнитном поле в уже выполненных и планируемых экспериментальных исследованиях.

Финансирование работы

Работа Н.А. Лучинкина выполнена при поддержке гранта Министерства науки и высшего образования РФ в рамках государственного задания № FSWF-2023-0017 (соглашение № 075-03-2023-383 от 18.01.2023 г.) в сфере научной деятельности на 2023–2025 гг. Работа И.А. Беляева, Л.А. Федосеева, Е.М. Шенягина, Н.Е. Балабаева выполнена при поддержке государственного задания № 075-00270-24-00 от 27.12.2023 г.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S. Smolentsev, Fusion Sci. Technol., **79** (3), 251 (2023). DOI: 10.1080/15361055.2022.2116905
- [2] O. Zikanov, I. Belyaev, Y. Listratov, P. Frick, N. Razuvanov,
 V. Sviridov, Appl. Mech. Rev., 73 (1), 010801 (2021).
 DOI: 10.1115/1.4049833
- [3] S. Smolentsev, Fluids, **6** (3), 110 (2021). DOI: 10.3390/fluids6030110
- [4] Л.Г. Генин, В.Г. Свиридов, Гидродинамика и теплообмен МГД-течений в каналах (МЭИ, М., 2001).
- [5] J.A. Shercliff, J. Fluid Mech., 1 (6), 644 (1956).
 DOI: 10.1017/S0022112056000421
- [6] В.А. Глухих, А.В. Тананаев, И.Р. Кириллов. Магнитная гидродинамика в ядерной энергетике (Энергоатомиздат, М., 1987).
- [7] T. Mizushina, S. Iuchi, T. Sasano, H. Tamura, Int. J. Heat Mass Transfer, 1 (2-3), 139 (1960).
 DOI: 10.1016/0017-9310(60)90017-X
- [8] Л.А. Суханов, Электрические униполярные машины (ВНИИЭМ, М., 1964).
- [9] P. Klaudy, Elektrotechnik und Maschinenbau, **78** (3), 128 (1961).
- [10] Е.А. Протасов, В.Н. Петровский, В.Д. Миронов, ЖТФ, 89 (2), 202 (2019).
 DOI: 10.21883/JTF.2019.02.47070.148-18 [Е.А. Protasov, V.N. Petrovskii, V.D. Mironov, Tech. Phys., 64 (2), 171 (2019).
- DOI: 10.1134/S1063784219020166].
 [11] П.Л. Кириллов, М.И. Терентьева, Н.Б. Денискина, Теплофизические свойства материалов ядерной техники (ИздАТ, М., 2007).