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The mean field approximation for a system of triplet bosons in nickelates
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Rare-earth orthonickelates RNiO3 are Jahn-Teller magnets, unstable with respect to the anti-Jahn-Teller

disproportionation reaction with the formation of a system equivalent to a system of effective spin-triplet composite

bosons moving in a non-magnetic lattice. Within the framework of the two-sublattice approximation, we have

developed a mean field theory for a model nickelate with competition between phases of charge ordering, an

antiferromagnetic insulator and a spin-triplet superconductor, and constructed phase diagrams taking into account

phase separation.
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1. Introduction

Orthonickelates RNiO3 (R — rare earth or yttrium Y)
for many years so far have been an object of intense

experimental and theoretical studies [1]. The phase dia-

gram of most rare-earth nickelates comprises a metal-like

disordered phase, a charge-ordered dielectric phase and

an antiferromagnetic ordering phase [2]. These systems

are characterized by great diversity of physical properties,

including metal-insulator transitions, uncommon nature of

resistivity and noncollinear magnetic structures. One

exclusion here is LaNiO3 which becomes an antiferro-

magnetic metal with decreasing temperature [3]. Some

papers reported discovery of a phase co-existence (or phase
separation) in nickelates Pr and Nd [2,4,5]. Unfortunately,

there has been no common opinion so far regarding the

formation mechanisms of nickelates’ electronic structure and

phase diagrams.

We started with a simple model where orthonickelates

RNiO3 are considered as Jahn-Teller magnetic materials

which are unstable in terms of Jahn-Teller dispropor-

tionation reaction with formation of a system equivalent to

the system of effective spin-triplet composite bosons moving

in the non-magnetic lattice [6–9]. In the two-sublattice

approximation we have developed a mean-field theory for a

model which manifests the charge order, antiferromagnetic

insulator, and spin-triplet superconductor phases with the

phase separation effects.

The article is organized as follows. Section 2 outlines

the spin-triplet bosons model and major relations of the

mean field approximation used for constructing the phase

diagrams. Main types of the model nickelate phase diagrams

are discussed in Section 3. Summary is given in Section 4.

2. Mean-field equations for a triplet
boson model

Formally, the ion Ni3+ in the low-spin configuration

t62ge
1
g of octahedron NiO6 forms a Jahn-Teller center with

a ground state orbital doublet 2E. As with many other Jahn-

Teller magnets [9] the orbital degeneracy in the orthonicke-

lates RNiO3 is removed not due to a local/cooperative Jahn-

Teller effect, but due to an alternative mechanism of so-

called anti-Jahn-Teller disproportionation [6–9]. As a result,

the electronic structure of the orthonickelate becomes a

formal equivalent of the system of local composite spin-

triplet bosons having configuration e2g;
3A2g, which move in

the non-magnetic lattice with the t62g-centers. Keeping the

leading terms of the effective Hamiltonian common for such

system [9], let’s write down a simplified Hamiltonian for a

model nickelate with a simple cubic lattice as follows:

Ĥ = −t
∑

〈i j〉γ

(B̂γ+
i B̂γ

j + B̂γ+
j Bγ

i ) + V
∑

〈i j〉

n̂i n̂ j + J
∑

〈i j〉

σ̂ i σ̂ j .

(1)
Here, t is a transfer integral of the spin-triplet boson with

preserved of spin projection γ = ±1, 0, V parameter of the

nonlocal charge interaction, J exchange integral. Only the

nearest neighbors in the simple cubic lattice are summed

up. Among the other most significant simplifications, the

absence of terms describing the interaction with lattice,

namely with the so called
”
breathing“ mode, shall be noted.

It shall be emphasized that actual Hamiltonian (1) is a

generalized version of a well-know Hamiltonian of the

spinless hard-core bosons model [10] for the spin-triplet

bosons case.

The basis states on the site includes four states |n, Sγ〉,
where n — the number of bosons on the site, S and
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γ are value of the spin and its z -projection: |1, 11〉, |1, 10〉,
|1, 1− 1〉, |0, 00〉. In this basis the operators on i-site will

be represented by matrices 4× 4. The operator n̂i is the

projection to subspace n = 1, and the spin operators are

also applied in this subspace, for instance

n̂i =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0











, σ̂z i =











1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0











. (2)

Operators B̂γ+
i describe the boson creation in |1, 1γ〉

state, for instance

B̂1+
i =











0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0











. (3)

It is also convenient here to introduce Cartesian com-

ponents of these operators with the help of relations

B̂γ
xi = 1

2
(B̂γ+

i + Bγ
i ), B̂γ

yi = − i
2
(B̂γ+

i − Bγ
i ), and use vector

operators B̂
γ
i = (B̂γ

xi, B̂γ
yi).

To define the mean field approximation we use the

Bogolyubov inequality to assess the system’s grand potential

�(Ĥ) ≤ � = 90 + 〈Ĥ − µN̂b − Ĥ0〉,

90 = −
1

β
ln(Tr e−βĤ0), (4)

where µ — is a chemical potential, β = 1/kBT (further, we
assume kB = 1), N̂b = 6i n̂i — is the operator of the full

bosons number, and the mean value is calculated based on

the states of an ideal system with the Hamiltonian

Ĥ0 = −
∑

i,γ

f
γ

λ(i)B̂
γ
i −

∑

i

ϕλ(i)n̂i −
∑

i

gλ(i)σ̂ i . (5)

We use the two-sublattice approximation, and here for the

two mutually inter-penetrating lattices A and B of the simple

cubic lattice λ(i) index is introduced. The molecular fields

f γ
αλ , ϕλ , gζ λ (α = x , y , γ = ±1, 0, ζ = x , y, z , λ = A, B),

are the variation parameters allowing to find the best

assessment for �(Ĥ). Expression for ω = �/N, where N —
is the number of sites is written as follows

ω =
90

N
− z t

∑

γ

B
γ
AB

γ
B +

z
2

V nAnB +
z
2

J SASB

+
1

2

∑

λ

[

∑

γ

f
γ
λB

γ
λ + (ϕλ − µ)nλ + gλSλ

]

. (6)

Here, z — is the number of the nearest neighbors (z = 6

for a simple cubic lattice), while the mean B
γ

λ(i) = 〈B̂γ
i 〉,

nλ(i) = 〈n̂i〉, and Sλ(i) = 〈σ̂ i〉 are expressed through deriva-

tives with respect to appropriate molecular fields, e. g.

nλ = − 2
N

∂90

∂ϕλ
. By minimizing ω, we’ll obtain a system of

equations for molecular fields















f
γ
λ = 2z tBγ

λ
,

ϕλ = µ − zV n
λ
,

gλ = −z J S
λ
.

(7)

For λ index the overline implies a sublattice additional

to this one: A = B , B = A. Equations (7) shall be

supplemented with a condition for bosons concentrations

n = 〈N̂b〉/N, in order to exclude the chemical potential µ:

nA + nB = 2n.
Equations (7) for high temperature have solutions which

describe the non-ordered (NO) phase, where B
γ

λ
= 0,

Sλ = 0 and nA = nB = n. In this case an analytical expres-

sion for the free energy per lattice site can be formulated

f =
z
2

V n2 −
1

β
[n ln 3− n ln n − (1− n) ln(1− n)]. (8)

The expression in brackets defines the entropy of NO phase

with maximum equal to 2 ln 2 at n = 3/4.

The conditions of the grand potential minimum’s in-

stability for NO phase relative to variations of fields ϕλ ,

gλ or f
γ
λ result in expressions for critical temperatures

of transition into the charge-ordered (CO) phase with

x = (nA − nB)/2 6= 0, antiferromagnetic (AFM) phase with

gA = −gB 6= 0 or boson superfluid (BS) phase B
γ
λ 6= 0,

respectively

TCO = zV n(1− n), (9)

TBS =
4

3
z t

(

n −
3

4

)[

ln
n

3(1− n)

]−1

, (10)

TAFM =
2

3
z Jn. (11)

Concentration dependencies of critical temperatures are

shown in Figure 1. Expression (9) for TCO coincides with

the well-known expression for critical temperature of the

charge-ordering in the model of hard-core bosons [10].
The difference of expression (10) for TBS from the

superfluid transit critical temperature [10] is associated with

the spin degeneracy for bosons in our model. The linear

concentration dependence (11) for critical temperature of

the antiferromagnetic ordering is itself a specific ratio

which is evidenced by comparison with results for other

pseudospin models [11,12].
If the temperatures are below the critical one the system

of equations (7) has solutions which can be called pure

phases when only one order parameter is non-zero. For

CO phase there remain molecular fields equations ϕλ ,

λ = A, B :

ϕλ = µ − zV
3

3 + e−βϕ
λ

. (12)

For AFM phase, given the isotropic nature of exchange

interaction, it is enough to consider the molecular fields
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Figure 1. Concentration dependencies of critical temperatu-

res (9−11) at z = 6, V = 1, J = 1, t = 1.

equations ϕ = ϕA = ϕB and g = gz A = −gz B :



















ϕ = µ − zV
1 + 2 ch(βg)

1 + 2 ch(βg) + e−βϕ
,

g = z J
2 sh(βg)

1 + 2 ch(βg) + e−βϕ
.

(13)

For BS phase it is helpful to consider that boson transport in

the Hamiltonian (1) has isotropic nature and doesn’t depend

on the spin projection. In this case it is enough to determine

the molecular fields ϕ = ϕA = ϕB and f = f γ
xA = f γ

xB ,

γ = A, B , taking all other fields equal to zero. In this case

the system of equations (7) will be written as















































ϕ = µ − zV
φ
[

2e
β

2
ϕ + ch

(β

2
φ
)]

+ ϕ sh
(β

2
φ
)

2φ
[

e
β

2
ϕ + ch

(β

2
φ
)]

,

1 = z J
sh

(β

2
φ
)

φ
[

e
β

2
ϕ + ch

(β

2
φ
)]

,

(14)

where φ =
√

ϕ2 + 3 f 2. It shall be emphasized that

obtained solutions for pure phases shall be verified for

stability.

Generally speaking, apart from the pure phases, solutions

for mixed phases can be implemented under certain condi-

tions, when several order parameters are non-zero. These

solutions are equivalent to the super solid phase in the

hard-core bosons model [10]. Investigation of properties

and availability of these types of solutions is quite a time-

consuming task. However, our tentative results demonstrate

that free energy of mixed phases in the considered model

with the given set of parameters is higher than free energy

of the phase separation state of pure phases. This situation

is fully equivalent to results for the model of hard-core

bosons [13]. The phase separation areas in the phase dia-

gram are defined using Maxwell construction [14]: at given
temperature the boundary concentrations ni corresponding

to pure phases i = 1, 2 can be found from the concentration

ratios of chemical potential of phases: µi(n, T ) = µ∗, where

µ∗ — point of intersection of specific grand potentials of

phases, ω1(µ
∗, T ) = ω2(µ

∗, T ). The ratios mi of each phase

are given by the following relations:

m1 =
n2 − n
n2 − n1

, m2 =
n − n1

n2 − n1

, n1 ≤ n ≤ n2. (15)

3. Results

Typical phase diagrams for the model of spin-triplet

bosons with Hamiltonian (1) obtained with regard to the

approximations above are given in Figure 2.

At V/J = 1, t/J = 1 (see Figure 2, a) the phase diagram

has the areas of BS and AFM phases divided by the phase

separation area BS+AFM denoted by 1 in a circle. This

area starts in the tricritical point where critical temperatures

of BS and AFM phases intersect, and in its ground

state this area covers the range 0.42 < n < 1. When the

transport integral is reduced to a value t/J = 0.3 (see
Figure 2, b) we arrive at proportional decrease of TBS,

and a CO phase area existing only at finite temperatures

appears on the phase diagram. Two new tricritical points

represent the initial areas of the phase separation BS+CO

and CO+AFM (denoted by 2 and 3 in a circle), which are

also possible only at finite temperatures. In the ground

state the phase separation BS+AFM in 0.22 < n < 1

range takes place. Decrease of the charge interaction

parameter to V/J = 0.6 (see Figure 2, c) leads to reduction

of CO phase area and removal of the phase separation

areas BS+CO and CO+AFM, while BS+AFM area, in

contrary, increases and covers the range 0.1 < n < 1 in its

ground state.

At V/J = 1.33, t/J = 0.5 (see Figure 2, d) the tricritical

point at the intersection of TCO and TAFM corresponds

to n = 0.5. In the ground state in point n = 0.5 the

CO phase is provided, yet the boundary of the phase

separation area CO+AFM at finite temperatures lies slightly

more to the left of this point. In ground state BS+CO

and CO+AFM areas cover the regions 0.3 < n < 0.5 and

0.5 < n < 1, respectively. Increase of V parameter, as

shown in Figure 2, e and f, results in proportional increase

of TCO and offset of tricritical points, however, in its ground

state the area CO+AFM remains the same, 0.5 < n < 1,

and the ranges BS and BS+CO are reallocated in the range

0 < n < 0.5.

The step-by-step change of the phase diagram at

V/J = 6 with the growth of transfer integral from

t/J = 1.5 to t/J = 3.5 is shown in Figure 2, g, h, i.
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Figure 2. Phase diagrams of triplet bosons model with Hamiltonian (1) in the mean field approximation. Dashed lines show the

boundaries of phase separation indicated by numbers: 1 — BS+AFM, 2 — BS+CO, 3 — CO+AFM.

When t/J = 2.8 the area of BS phase and BS+CO

and BS+AFM areas appear from the right to the point

n = 0.5, however, at this point in the ground state,

the CO phase is realized. Further, when t/J = 3.5

the CO phase exists only at finite temperatures, and in

ground state only BS phase and phase separation BS+AFM

take place.

For the ground state of the considered model within the

applied approximation several common conclusions may be

formulated. Given small values n the ground state of the

system is BS phase, CO phase appears only for relatively

large values of parameter V only when n = 0.5, and AFM

phase takes place only when n = 1. Finite ranges of values

n may correspond to phase states BS, BS+AFM, BS+CO

and CO+AFM.

It should be noted also that the applied approximation

didn’t include the solutions for mixed phases like super solid

and its equivalents when more than one parameter of the

order is non-zero. Finding these solutions may be an

individual research issue, however, our preliminary results

demonstrate that similar to the case of the well-known

model of spinless hard-core bosons [13] the free energy of

mixed phases in our model is higher than the free energy

of the phase separation state of pure phases.
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4. Conclusion

Within the mean field approximation we have considered

a simple model of the disproportionate phase of orthonicke-

lates RNiO3, the Hamiltonian of which is equivalent to the

Hamiltonian of the spin-triplet local bosons model on a non-

magnetic lattice.

Phase diagrams of coexistence of
”
pure“ phases with a

single non-zero order parameter have been constructed —
namely, the phase of non-magnetic charge ordering, the

antiferromagnetic phase and the spin-triplet bosonic super-

conductor phase. A universal behavior of phase separation

is demonstrated.
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