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1. Introduction

The one-dimensional spin models, despite their apparent

simplicity compared to the multi-dimensional models, have

a set of unique properties. The exact solutions for these

models underpin the understanding of a complex behavior

of real physical systems and play an important role in

studying such phenomena as phase transitions in statistical

physics [1]. The absence or complexity of the long-

range order formation underlies the unusual behavior of

the low-dimensional (pseudo) spin systems. The presence

of anisotropy and frustration in the system contribute to

a variety of phase diagrams and also to such unusual

phenomena as magnetic plateaus [2], quasi-phases and

pseudo-transitions [3], as well as the enhancement of the

magnetocaloric effect [4]. The disorder also significantly

affects the phase, critical and magnetic properties of the

systems, and serves as a source of frustration. The frustrated

phases, provided that Rojas criterion is fulfilled [5], can

be the cause of such subtle pseudo-critical phenomenon

as pseudo-transitions expressed as a jump-like change of

the system disordered state and are accompanied by sharp

features of some thermodynamic functions.

Despite the availability of an exact solution, the analysis

of the phase states in one-dimensional systems within the

framework of standard formalism presents a non-trivial

challenge, especially for states at the boundaries between

different phases. An alternative approach in this case could

be the construction of a mapping of the one-dimensional

model onto a Markov chain, which has previously been

utilized to analyze the frustrated phase states of a dilute

Ising chain in a magnetic field [6,7], as well as for Potts

model on a diamond chain [8]. Such a mapping can

be constructed for any model, which partition function

can be expressed via the transfer-matrix, that is true, for

instance, for various versions of Ising, Potts, Blume−Capel

and Blume−Emery−Griffiths models.

One of the sources of frustration in 1D spin systems

is the introduction of impurities [7]. In this work, we

consider the dilute Ising chain where the charged impurities

of two types are introduced. The 2D version of this model

was obtained and studied earlier as an atomic limit for a

pseudospin model of cuprates [9]. The ground state and

thermodynamic properties of the dilute Ising system are

influenced by both the frustration due to impurities and

the competition of the charge and magnetic orderings [10].
Through numerical simulations on a square lattice, it has

been shown that this leads to the presence of non-universal

critical behavior [11], first-order phase transitions [12], and
reentrant phase transitions [13].
The article is organized as follows. Section 2 in-

cludes the constructed and studied phase diagrams of the

1D Ising model with charged impurities in the variables

”
exchange interaction parameter — chemical potential“.

Also, concentration dependences are found for the residual

entropy of the frustrated phases. Section 3 outlines

methodology of mapping the one-dimensional model onto

a Markov chain; expressions for the transition matrix,

equilibrium state and correlation functions are provided.

The Markov chain properties and correlation properties for

the frustrated ferromagnetic and antiferromagnetic phases

were analyzed. In Section 4, the types of Markov chains

are classified according to their symmetry and correlation

properties; the influence of the magnetic field on the

Markov chains was reviewed. A summary is provided in

Section 5.
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2. Ground state phase diagrams and
residual entropy of the
frustrated phases

The ground state phase diagrams, as well as temperature

phase diagrams of 2D Ising model with two types of non-

magnetic impurities on a square lattice were calculated

earlier in works [10,13] by mean field method and compu-

tational modeling in zero magnetic field at specified charge

density of non-magnetic impurities n, as one of the system

parameters.

The Hamiltonian of a 1D dilute Ising model is expressed

as follows

H =

N
∑

i=1

{1S2
z ,i + V Sz ,iSz ,i+1 + JP0,i s z ,i s z ,i+1P0,i+1

− hP0,i s z ,i − µSz ,i}, (1)

where 1 — one-site density-density correlations in the form

of a single-ion anisotropy for the pseudospin S = 1; V —
inter-site density-density interaction; J — Ising exchange

interaction of spins s = 1/2; h — external magnetic field;

P0,i = 1− S2
z ,i — projection operator for magnetic states.

The summation is carried out for N sites of the chain.

Using the chemical potential µ, a constraint is imposed

on the system in the form of conservation of total charge,

which can be expressed as fixing the charge density of

non-magnetic impurities: n =
〈
∑

i Sz ,i
〉

/N. A detailed

discussion of the density-density interaction within the

pseudospin formalism was given in work [12]. Thus,

each site of the chain can be in one of the charge states

(spinless states of the pseudospin Sz = ±1 for positively

and negatively charged impurities, respectively), or in one of

the spin states (states of spin s z = ±1/2, which correspond

to projection of the pseudospin Sz = 0).
Expressions for a grand thermodynamic potential of the

system per one site for different phases of the ground state

can be written as follows:

ω±
I = 1 + V ± µ, ωCO = 1−V, ω±

FM = J ± h,

ωAFM = −J, ω±±
PM =

1± h ± µ

2
. (2)

Impurity (I), ferromagnetic (FM), anti-ferromagnetic

(AFM), charge-ordered (CO) and paramagnetic (PM)
phases correspond to the following configurations

of the nearest neighbors for h > 0: I± → (±1,±1),

FM →
(

1
2
, 1
2

)

, AFM →
(

1
2
,− 1

2

)

, CO → (1,−1),

PM± → (±1, 1
2
). These

”
pure“ phases are characterized

by the following values of the impurities charge density:

nI± = ±1, nFM = nAFM = nCO = 0, nPM± = ± 1
2
.

By minimizing the grand potential of the system, new

phase diagrams may be built in the variables (J, µ).
2D areas in this case will correspond to the edge values in

terms of n for the diagrams built in the representation with

the given n. On the contrary, the boundaries between the

areas on phase diagrams in variables (J, µ) will correspond

to
”
mixed“ phases with an intermediate value of n, that may

have non-zero residual entropy.

In a strong magnetic field (h ≥ 2V ), the four types of

phase diagrams are possible, as shown in Figure 1. Thus,

for large negative 1, the
”
pure“ phases are (A)FM, COI

(true for n = 0) and I± (n = ±1). Thus, the intersection

of (A)FM-phase with the impurity phase I will give a

dilute (anti)ferromagnetically ordered phase (dilute (A)FM)
with phase separation into magnetic domains and charged

droplets — macroscopic areas with a total volume |n|,
containing only sites filled with impurities. The number

of permutations of charged droplets in a chain that do not

change the ground state energy has a power-law asymptotic

behavior, and as one approaches the thermodynamic limit

N → ∞, the residual entropy of these phases will tend

to zero. The intersection of COI with I is the phase

of the dilute charge ordering (dilute COI). The charged

impurities of one type are randomly distributed against the

background of a checkerboard charge ordering. There is an

exponentially large number of permutations of
”
excessive“

impurities without the energy change, which leads to non-

zero residual entropy. Thus, dilute COI-phase is frustrated.

The charge density of the impurities for both dilute phases

can take any value: 0 < |n| < 1.

At 1 = −h, a
”
pure“ paramagnetic phase PM± (n = ± 1

2

)

appears, which at the interface with COI causes the charge

paramagnetic phase PM-COI that has non-zero residual

entropy and exist for 0 < |n| < 1
2
. PM-COI is a dilute

checkerboard charge order with paramagnetic centers as

single spins, which are oriented along the field in the ground

state. The boundaries of (A)FM with PM provide frustrated

(anti) ferromagnetic phase FR-(A)FM with 0 < |n| < 1
2
.

This is a dilute (A)FM-phase with (anti) ferromagnetically

ordered clusters (or single spins, aligned with magnetic

field) separated by single non-magnetic impurities with the

charge density of n. Here, in contrast to the dilute (A)FM-

phase, the non-magnetic impurities are not collected into

a charged droplet, but are distributed randomly throughout

the entire system, resulting in a non-zero residual entropy.

At 2V−h
2

≤ 1 ≤ 0 an additional boundary between the

two paramagnetic phases PM+ and PM− appears, which

corresponds to the frustrated charge phase FR-COII with

sublattice-alternating spins aligned with the field and non-

magnetic impurities of both charges. This phase occurs at

0 ≤ |n| < 1
2
.

To obtain the expressions for residual entropy of frus-

trated phases within the
”
standard“ transfer-matrix ap-

proach, it is necessary to find the maximum eigenvalue of

the transfer-matrix, determine the parametrical dependence

of the entropy from the charge density using the chemical

potential, and find the limit at the zero temperature.

This is quite a sophisticated task; however, based on the

Markov property of the dilute Ising chain [14], one can

analytically define the concentration dependencies of the

residual entropy of all frustrated phases of the ground state

by an alternative method [6].
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Figure 1. Ground state diagrams for h ≥ 2V (strong magnetic field) in variables (J, µ).

The dependences of the residual entropy of the ground

state phases on the charge density of impurities n are

given in Figure 2 in zero (b) and non-zero (a) magnetic

fields. The dilute (A)FM phase has zero residual entropy

at all values of the charge density n and is not shown

in the Figure. The dilute COI phase has a non-zero

entropy for n 6= 0, which doesn’t depend on magnetic

field; it reaches a maximum value of 1
2
ln

√
5+1√
5−1

≈ 0.481

at |n| = 1√
5
≈ 0.447. The PM-COI and FR-AFM phases

in zero field have identical residual entropies, as they are

symmetric with respect to the replacement of spin states

with pseudospin states. The maximum entropy of these

phases is equal to ln 2
2

≈ 0.347, and is reached at |n| = 1
4
,

while at h = 0 maximum values reach ln 3
2

and ln 2 at |n| = 1
3

for PM-COI and FR-AFM, respectively. The entropies of

the FR-FM and FR-PM phases are symmetrical relative to

the edge point |n| = 1
2
, and reach their maximum values

of 1
2
ln

√
5+1√
5−1

≈ 0.481 at |n| = 5∓
√
5

10
≈ 1

2
∓ 0.224 for h 6= 0

and ln 2 at |n| = 1
2
∓ 1

6
at h = 0. The FR-COII phase is

of particular interest, it arises only in the strong magnetic

field h ≥ 2V . Residual entropy of this phase is non-zero and

reaches its maximum value of ln 2
2

≈ 0.347 at n = 0, which

may be caused by re-arrangement of charge states without

the change of energy. This is the only phase that remains

frustrated at n = 0.

It can be noted that the maximum values of the entropy

of the frustrated phases FR-COII, PM-COI, FR-AFM are

lower than those for dilute COI, FR-FM, FR-PM. Moreover,

in zero magnetic field, the entropies of FR-FM, FR-AFM,

PM-COI, FR-PM phases increase even more. The reason

for this lies in their structure, a detailed analysis of which

can also be carried out using a mapping of a 1D system

onto a Markov chain [7,8]. Such a mapping may be

simulated for any model, the partition function of which

allows presentation via the transfer-matrix, that is true, for

instance, for various versions of Ising, Potts, Blume−Capel

and Blume−Emery−Griffiths models.

Physics of the Solid State, 2024, Vol. 66, No. 7



XXVIII International Symposium
”
Nanophysics and Nanoelectronics“ 1071

0 0.2 0.4 0.6 0.8 1.0
n

R
es

id
u
al

 e
n
tr

o
p
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 a bh = 0h 0¹

FR-FM FR-PM

Dilute COIFR-COII
PM-COI,
FR-AFM

PMCOI I

Dilute COI

0 0.2 0.4 0.6 0.8 1.0
n

R
es

id
u
al

 e
n
tr

o
p
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
FR-FM,
FR-AFM FR-PM

PM-COI

COI/(A)FM I

PM

Figure 2. Concentration dependencies of the residual entropy of various ground state phases at (a) h 6= 0; (b) h = 0.

3. Mapping a 1D spin model onto a
Markov chain

1D system transfer-matrix with Hamiltonian (1) in the

local basis of states

8 = {|Sz , s z 〉} =
{

|+ 1, 0〉, |− 1, 0〉,
∣

∣

∣0, +
1

2

〉

,

∣

∣

∣0,−1

2

〉}

≡
{

+1,−1,+
1

2
,−1

2

}

has a structure

T̂ =













e−βω
−

I e−βωCO e−βω
−−

PM e−βω
+−

PM

e−βωCO e−βω+
I e−βω

−+
PM e−βω++

PM

e−βω
−−

PM e−βω
−+
PM e−βω

−

FM e−βωAFM

e−βω
+−

PM e−βω++
PM e−βωAFM e−βω+

FM













, (3)

where the notations (2) are used for grand thermodynamic

potentials of the ground state phases.

As elements of the transition matrix of the Markov

chain, one can take the conditional probabilities P(b|a)
of realizing state b at the (i + 1)-site given that the

i-site is in state a . The conditional probabilities can

be defined by Bayes formula P(ab) = P(a)P(b|a), where

P(a) = 〈Pa,i〉 — probability of implementation of a state

At the i-site, P(ab) = 〈Pa,i Pb,i+1〉 — probability of joint

implementation of a and b states on i- and (i + 1)-sites,
respectively, Pa,i — projector on a state for site i .
By using the transfer matrix (3) built on the states a , one

can find the correlators [8]

〈Pa,i〉 = 〈a |λ1〉〈λ1|a〉, (4)

〈Pa,i Pb,i+l〉 = 〈a |λ1〉
T l

ab

λl
1

〈λ1|b〉, (5)

where λ1 — the largest eigenvalue of the transfer-matrix,

〈a |λ1〉 = υa — the element of the eigenvector of the

transfer-matrix for state a corresponding to the largest

eigenvalue λ1.

Thus, the conditional probabilities are equal to the

correlators ratio

P(b|a) =
〈Pa,i Pb,i+l〉

〈Pa,i 〉
=

Tabυb

λ1υa
= πab. (6)

Equilibrium (stationary) state of the system can be

expressed as a limiting distribution p of the Markov chain,

which remains unchanged as a result of the transition matrix

action. Respectively, for pa components of the limiting

distribution the following is true

∑

a

paπab = pb,
∑

a

pa = 1, pa = P(a) = 〈Pa,i 〉. (7)

Given (4), for symmetric transfer-matrices the limiting

distribution is associated with the normalized eigenvector

corresponding to the largest eigenvalue

pa = υ2
a . (8)

Pair distribution functions can also be expressed using the

transition matrix, if we use the conclusion of Kolmogorov–
Chapman theorem:

〈Pa,i Pb,i+l〉 =
∑

s 1,...,s l−1

P(a)P(a |s1)P(s1|s2) . . . P(s l−1|b)

= paπ
l
ab = πl

ba pb. (9)

Physics of the Solid State, 2024, Vol. 66, No. 7
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The correlation function for the states a and b, thus, can
be expressed as follows:

Kab(l) = 〈Pa,i Pb,i+l〉 − 〈Pa,i〉〈Pb,i 〉 = paπ
l
ab − pa pb

= pbπ
l
ba − pa pb.

(10)
Taking into account σz ,i = P0,i s z ,i/s = P 1

2
,i − P− 1

2
,i , one

can calculate the spin correlation function:

C(l) = 〈σz ,iσz ,i+l〉 − 〈σz ,i〉2. (11)

To construct the transition matrix and the corresponding

Markov chain for a specific frustrated ground state phases,

one can leave only the leading order elements in the transfer

matrix, and neglect the remaining elements due to their

exponentially small contributions at low temperatures. We

will do it for the frustrated magnetic phases FR-AFM and

FR-FM.

Let’s consider the system in the external magnetic field:

h > 0. For convenience, we will examine the cases of

positive impurities charge: n > 0. Since FR-AFM phase

arises on the intersection of AFM and PM phases on

(J, µ)-diagram (see Figure 1), in the transfer-matrix we’ll

keep only the members corresponding to the necessary

configurations of the neighboring states:

T̂ =







0 e−βω−−

PM 0

e−βω
−−

PM 0 e−βωAFM

0 e−βωAFM 0






=







0 e 0

e 0 d

0 d 0






.

−1 state is absent, the system states space will be reduced to

8 =
{

+1,+ 1
2
,− 1

2

}

. The largest eigenvalue of the transfer-

matrix is equal to λ1 =
√

d2 + e2 with the eigenvector

υ =
(

e√
2λ1

, 0, 1√
2
, d√

2λ1

)T
.

According to expressions (6), (8) let’s define the form of

the transition matrix and limiting distribution for this phase:

π =









0 1 0

e2

λ2
1

0
d2

λ2
1

0 1 0









, p =
1

2λ21









e2

λ21

d2









. (12)

The condition of constant charge density of impurities can

be written as

n = P(1) − P(−1) = p1 − p−1. (13)

Then, the elements of the transition matrix and limiting

distribution can be expressed through n:

π =







0 1 0

2n 0 1− 2n

0 1 0






, p =









n

1
2

1
2
− n









. (14)

For the FR-AFM phase, the equilibrium state is the state

when the half of the chain is filled with spins + 1
2
, while

+1/2

–1/2

+1

+1 +1/2

a b

1

1

2n

1 – 2n

1

n

1– n

1 – 2n

n1–

Figure 3. Transition graphs between the states of Markov chain

for the transition matrix of phases a) FR-AFM; b) FR-FM.

the remaining part of the system is a mixture of positively

charged impurities with density of n (with pseudospin +1)
and spins − 1

2
with density of 1

2
− n. Based on the type

of transition matrix it is convenient to built the graph of

possible transitions. The vertices of the graph designate

possible states of the system, the links from one vertex to

another show possible transitions between the states. It is

presented in Figure 3, a for the FR-AFM phase. Thicker

lines correspond to larger conditional probabilities of the

transition. Transitions to the + 1
2
state from others occur

with probability 1, this state fully fills one sublattice, while

the second sublattice is chaotically filled with +1 and − 1
2

states in accordance with a fixed value of n.
The impurity and spin correlation functions are equal,

correspondingly

K+1,+1(l) = (−1)ln2, C(l) = (−1)l(1− n)2. (15)

Both correlation functions are characterized by the infinite

correlation length: ξ = ∞.

Thus, the chain is divided into two sublattices. One of

them is fully ordered — filled with + 1
2
spins, which gives an

infinite correlation length. In the second sublattice, the spins

− 1
2
are replaced by +1 impurities with increasing n and are

arranged chaotically. The state of this sublattice is frustrated

and is characterized by the correlation functions equal to

zero. Because of this, the FR-AFM phase combines ordering

on one sublattice and chaotic character on the other, which

gives infinite correlation length and non-zero entropy. It is

clearly seen when analyzing the two-step transition matrix

π2 =







2n 0 1− 2n

0 1 0

2n 0 1− 2n






. (16)

The state space of the two-step Markov chain splits into two

independent sub-spaces: 8 =
{

+ 1
2

}

∪
{

+1,− 1
2

}

, which

describe two sublattices of the spin chain.

As a result, FR-AFM phase may be represented as a

set of AFM-clusters separated by single impurities. In this

case, AFM clusters always contain an odd number of spins

and have states + 1
2
at the edges, aligned with the external

magnetic field h > 0.

Let’s consider an equivalent frustrated ferromagnetic

phase FR-FM in the field h > 0. It corresponds to the

Physics of the Solid State, 2024, Vol. 66, No. 7
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boundary between phases FM and PM on (J, µ)-diagram
(see Figure 1). The transfer-matrix, transition matrix and

equilibrium system state in this phase will be expressed as

follows:

T̂ =

(

0 e−βω
−−

PM

e−βω
−−

PM e−βω+
FM

)

,

π =

(

0 1

n
1−n

1−2n
1−n

)

, p =

(

n

1− n

)

. (17)

Now the states space is reduced to 8 =
{

+1,+ 1
2

}

. The

system equilibrium state is itself the ferromagnetic clusters

separated by single non-magnetic impurities. The transition

graph is shown in Figure 3, b.

The impurity and spin correlation functions are equal to:

K+1+1(l) = K+ 1
2
+ 1

2
(l) = C(l) = (−1)ln(1− n)e−l/ξ , (18)

where the correlation length ξ is finite and depends on the

charge density:

ξ =
[

ln
(1− n

n

)]−1

. (19)

This means, that at h 6= 0 there are no critical fluctuations,

and the state remains frustrated and disordered even at

T = 0. The correlation length is equal to zero at n = 0,

when the FR-FM phase transits into the ordered FM-phase

with entropy equal to zero.

In the absence of external magnetic field the properties

of FR-AFM and FR-FM phases will slightly change. For the

FR-AFM phase the mutual relations between the impurities

state +1 and spin state − 1
2

will be added into Markov

chain. For the FR-FM phase the spin state − 1
2
, having

the same relation with impurities, as + 1
2
state, will appear.

Now the spin states ± 1
2

are included in Markov chain

symmetrically. The correlation functions in the zero field

decrease exponentially for both phases,

KFR-AFM
+1+1 (l) = KFR-FM

+1+1 = (−1)l(1− n)ne−l/ξc , (20)

CFR-AFM(l) = (−1)lCFR-FM(l) = (−1)l(1− n)e−l/ξs , (21)

where charge and spin correlation lengths are equal, corre-

spondingly

ξc =
[

ln
(1− n

n

)]−1

, ξs =
[

ln
( 1− n
1− 2n

)]−1

. (22)

As a result, the application of an external magnetic field

may induce a subtle rearrangement of states, leading to the

emergence of long-range order characterized by an infinite

correlation length within one of the sublattices. In contrast,

in the ferromagnetic phase FR-FM the response to the

magnetic field is primarily characterized by the flipping of

spin clusters in the direction of the applied field.

Thus, the analysis of the ground state phases using

Markov chains facilitates the identification of the features

of the phases structure and reveals the hidden sublattice

ordering. This method also allows for the analytical deter-

mination of correlation functions and correlation lengths, as

well as the calculation of residual entropy.

4. Types of Markov chains
of the 1D dilute Ising model

Now we classify the types of Markov chains and deter-

mine their form for the existing phases. The results for the

frustrated ground state phases are presented in the Table,

where for each phase we provide the transition matrix π,

the form of the equilibrium state p, the transition graph

between states in the space 8, as well as the form of the

correlation functions and correlation lengths.

In the presence of a magnetic field, we can distinguish

two types of Markov chains; they are given in the first two

parts of the Table. The FR-AFM, FR-COII and PM-COI

phases have Markov chains with a period of 2 and an infinite

correlation length due to the ordered sublattice. As a result,

the residual entropy for these phases is lower than that of

the second class of frustrated phases. The second class

phases, FR-FM, dilute COI, and FR-PM, are characterized

by a Markov chain consisting of two states and a finite

correlation length that depends on n.
The rearrangements of Markov chains at h = 0 also

occur in other phases sensitive to a magnetic field. The

characteristics of Markov chains for such phases in the

absence of a magnetic field are given in the last part of the

Table. The Markov chain for the paramagnetic charge phase

PM-COI in the absence of a magnetic field retains a period

of 2; however, now, in addition to the state + 1
2
, the opposite

spin state − 1
2
emerges. While the long-range ordering of

impurities in the sublattice remains stable at any magnetic

field, the spin states become uncorrelated in the absence of a

magnetic field. Markov chain of the frustrated paramagnetic

phase FR-PM in zero field contains an additional state − 1
2
,

which is symmetric to + 1
2
. The charge correlation length

remains unchanged; however, the spin correlation function

becomes zero, which increases the residual entropy of this

phase.
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Figure 4. Correlation length of ground state phases as a function

of charge density of non-magnetic impurities n in a logarithmic

scale.
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Table of frustrated phases mapping on Markov chains (n > 0)

Type of
Transition Equilibrium Transition

Correlation

Markov Phase
matrix π state p graph

functions K+1+1(l),C(l)
chain and correlation lengths

FR-AFM
C(l) = (−1)l(1− n)2,

(h > 0)

(

0 1 0

2n 0 1− 2n
0 1 0

)





n
1
2

1
2
− n





K+1+1(l) = (−1)ln2,

–1/2

+1/2

+1

ξ = ∞

Periodic PM-COI

(

0 1− 2n 2n
1 0 0

1 0 0

)





1
2

1
2
− n
n





+1

+1/2

–1
K+1+1(l) = (−1)1

4
,

with a period of 2 (h > 0) C(l) = (−1)ln2, ξ = ∞

FR-COII

(

0 0 1

0 0 1
1
2

+ n 1
2
− n 0

)





1+2n
4

1−2n
4
1
2





–1/2

+1/2

+1
K+1+1(l) = (−1)l (1+2n)2

16
,

C(l) = (−1)l

4
, ξ = ∞

FR-FM

(

0 1
n

1−n
1−2n
1−n

)

(

n
1− n

)

+1 +1/2

K+1+1(l) = C(l)

(h > 0)

= (−1)ln(1− n)e−l/ξ ,

ξ =
[

ln
(

1−n
n

)]−1

Aperiodic
FR-PM

(

2n−1
n

1−n
n

1 0

)

+1+1/2

K+1+1(l) = C(l)

(h > 0)
= (−1)ln(1− n)e−l/ξ ,

ξ =
[

ln
(

n
1−n

)]−1

dilute COI

(

2n
1+n

1−n
1+n

1 0

) (

1+n
2

1−n
2

)

+1–1
K+1+1(l) = (−1)l

4
(1− n2)e−l/ξ ,

ξ =
[

ln
(

1+n
1−n

)]−1

Periodic PM-COI







0 1− 2n n n
1 0 0 0

1 0 0 0

1 0 0 0















1
2

1
2
− n
n
2
n
2









–1

+1

+1/2

–1/2

K+1,+1(l) = (−1)l

4

with a period of 2 (h = 0) C(l) = 0, ξc = ∞

FR-AFM





0 1
2

1
2

n
1−n 0 1−2n

1−n
n

1−n
1−2n
1−n 0





+1

–1/2

+1/2
K+1,+1 = (−1)l(1− n)ne−l/ξc ,

(h = 0)
ξc =

[

ln
(

1−n
n

)]−1
,

C(l) = (∓1)l(1− n)e−l/ξs ,

ξs =
[

ln
(

1−n
1−2n

)]−1

Aperiodic
FR-FM





0 1
2

1
2

n
1−n

1−2n
1−n 0

n
1−n 0 1−2n

1−n









n
1−n
2

1−n
2





+1/2

–1/2

+1
(h = 0)

FR-PM

( 2n−1
n

1−n
2n

1−n
2n

1 0 0

1 0 0

)

+1

+1/2

–1/2

K+1,+1 = (−1)lne−l/ξ ,

(h = 0) ξc =
[

ln
(

n
1−n

)]−1
,

C(l) = 0
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The Figure 4 illustrates the concentration dependencies

of the correlation lengths of various frustrated phases in a

logarithmic scale, both in the presence and absence of a

magnetic field h. The correlation lengths of phases with

periodic Markov chains are not depicted, since they are

infinite for any n.
The impurity correlation length ξc for the phases

FR-(A)FM at h = 0 is the same as that for the FR-FM

phase at h 6= 0. It becomes zero at n = 0, when frustrated

phases transition into
”
pure“ (A)FM phases. In that case,

the spin correlation length ξs goes to infinity. This indicates

a magnetic phase transition at T = 0, when the (A)FM-state

becomes fully ordered. Another boundary point is n = 1
2
,

corresponding to
”
pure“ paramagnetic ordering PM. In this

point the impurity correlation length is divergent, while the

spin correlation length tends to zero. In the FR-PM phase,

compared to the FR-FM, the roles of impurity and spin

states are interchanged, resulting in symmetrical properties

of these phases relative to the n = 1
2

point; absence of

the spin correlation in the FR-PM phase in zero magnetic

field is an exclusion. In the dilute COI phase the long-

range checkerboard charge ordering at T = 0 occurs only

in
”
pure“ COI limit, at n = 0, when the charge correlation

length becomes divergent.

5. Conclusion

Using a method based on Markov chains analysis, the

properties of frustrated phases of the Ising chain with two

types of charged impurities have been studied.

The considered model exhibits a wide variety of ground

state phases, most of which have non-zero residual entropy,

and tend to be frustrated in this context. In zero magnetic

field each frustrated phase has its own type of Markov chain.

In an external field, the system has only 2 types of Markov

chains, each of which is typical for three different frustrated

phases of the ground state. The properties of these 2

Markov chains differ significantly. Thus, the frustrated

antiferromagnetic FR-AFM phase, the paramagnetic charge

phase PM-COI and a mixture of impurity paramagnetic

phases FR-COII have periodic Markov chains with a period

of 2 and three states. This indicates the presence of

ordering on one of the spin chain sublattices, while the

second sublattice remains completely disordered. Due to

this hidden ordering, the correlation length of the system is

infinite, while the residual entropy is relatively small. The

frustrated ferromagnetic FR-FM, checkerboard charge dilute

COI and paramagnetic FR-PM phases can be effectively

described by aperiodic Markov chains with two states. This

is in line with a spin chain composed of clusters of one state

type, which are separated by single sites of the second state

type. In this case, no long-range order is established in the

system, resulting in a finite correlation length that depends

on the charge density. Consequently, the residual entropy is

higher than that of the first-type phases.

The performed analysis shows that when a magnetic field

is included, the most significant change in the structure of

the spin chain corresponds to a change in the type of the

Markov chain: for the frustrated antiferromagnetic phase

FR-AFM, the aperiodic Markov chain becomes periodic,

which indicates the emergence of a long-range order in the

system.
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