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For low-angle tilt boundaries formed by dislocation walls of straight edge dislocations in slip systems 〈111〉{110}
and 〈111〉{112}, the sink strengths for self-point defects (vacancies and self-interstitial atoms) and the bias factors

(relative difference in the sink strengths for self-interstitial atoms and vacancies) have been calculated in BCC

metals Fe and V. The calculations have been performed using the object kinetic Monte Carlo method in the

temperature range 293−1000K, the subgrain misorientation angles 1.5−10◦ and the subgrain sizes 150−900 a
(a is the lattice parameter). The elastic interaction of self-point defects in stable and saddle-point configurations

(elastic dipoles) with the elastic fields of dislocation walls has been calculated by means of the anisotropic theory

of elasticity (metals Fe and V differ significantly in the elastic anisotropy ratio). The sink strengths of low-angle

boundaries do not depend (within the calculation accuracy) on their type (the slip system of dislocations). The bias
factor value varies with temperature in the range of 15−30% and is inversely proportional to the misorientation

angle and the size of the subgrains. The bias factors in Fe and V are significantly different (for V it is several times

less).
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1. Introduction

Fields of internal stresses in metals have significant effect

on formation and kinetics of self-point defects (SPDs:
vacancies and interstitial atoms), determining additional (as
compared with their absence) features of formation and

decomposition of their solid solutions under thermal and

radiation exposures. Dislocations and dislocation clusters

are main sources of internal stresses in metals [1,2]. The

processes determining the radiation properties of metals

(swelling, strengthening, creep, and fracture) develop in

a system
”
dislocation cluster — SPDs“. These processes

depend on symmetry of crystal lattices, elastic anisotropy

of metals and types of formed in them structural de-

fects [1,2]. Due to this it seems important to study the

effect of stress fields from dislocations and dislocation

clusters (including, low-angle tilt boundaries) on their sink

strengths for SPDs in metals with different elastic anisotropy

factors. Results of such processes study form the basis

for further construction and development of models of

formation and evolution of microstructure (formation and

mobility of dislocations) and properties (heat resistance,

swelling, creep, etc.) of metals under external effects

of different nature (radiation, thermal, mechanical) and

intensity.

History of theoretical and model calculations of sink

strengths of low-angle boundaries and their bias factor

(relative difference of sink strengths for self-interstitial

atoms (SIAs) and vacancies) counts for more than four

decades [3–6]. But in [3–6] interaction between low-

angle boundaries and SPDs is considered using isotropic

models for medium and SPDs (SPD is considered as

a spherical inclusion into isotropic media), but actual

metals are elastically anisotropic with specific types and

slip systems of dislocations. SPDs symmetry differs from

spherical (e. g., elastic dipoles, corresponding to saddle-

point configurations of an SIA and a vacancy in BCC

crystals Fe and V, have monoclinic and trigonal symmetry,

respectively [7]).
The body centered cubic (BCC) metal crystals Fe and V

are of important scientific and practical interest, they are

basis for development of structural steels and alloys for

nuclear and thermonuclear energy reactors. In this study

we consider the dislocation clusters in form of low-angle

tilt boundaries (LATBs — dislocation walls consisting of

straight edge dislocations in basic slip systems 〈111〉{110}
and 〈111〉{112}) in BCC crystals Fe and V. The elastic

fields of such LATBs and their effect on the formation and

direction of SPDs migration were studied by the methods of

anisotropic theory of elasticity earlier [7]. The sink strengths

of LATBs for SPDs are calculated using an object kinetic

Monte Carlo method (OKMC method) considering both

elastic anisotropy of studied metals Fe and V, and symmetry

of stable and saddle-point configurations of SPDs in these
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metals. Based on obtained grid of numerical values of sink

strengths of LATBs with discrete set of values of model

parameters (temperature ranges 293−1000K, disorientation

angles of subgrains 1.5−10◦, subgrain sizes 150−900 a ,
a — lattice parameter) the analytical expressions are

prepared. They ensure calculation of sink strengths of

LATBs for arbitrary values of parameters in the specified

ranges.

2. Method of calculation of sink
strengths of LATBs

The sink strengths of LATBs for SPDs were determined

by the OKMC method used previously to determine the

sink strengths of spatially uniform networks of dislocations

of different types [8–10]. Elastic interaction between LATBs

and SPDs, considered as elastic dipoles (a vacancy and a

self-interstitial atom in stable and saddle-point configura-

tions), was calculated in the framework of the anisotropic

linear theory of elasticity [7]. The interaction of an SPD

with only two nearest dislocation walls was considered,

as the interaction with other dislocation walls was low

to have significant effect on the calculation results. In

OKMC calculations at all the temperatures the elastic

fields of LATBs were calculated using the values of elastic

constants for temperatures close to absolute zero [11,12],
since test calculations at the highest temperature considered

(1000K) showed that taking into account the temperature

dependence of elastic constants (elastic anisotropy) leads

to insignificant change in sink strengths by maximum 3%,

and their relative difference for SIAs and vacancies (bias
factor) — maximum by 1%.

The schematic image of the simulation cell is shown

in Figure 1. The simulation cell was a right-angle prism

with rectangular base, along central axis of which one of

wall dislocations is located. Periodic boundary conditions

(PBC) were imposed on the side faces of the prism.

Side lengths of the rectangular base, Lx and Ly , were

selected to obtain required distances between neighboring

LATBs and subgrain misorientation angle 2 respectively

(2 = 2 arctg[b/(2h)] ≈ b/h, b is the modulus of the Burg-

ers vector of dislocations (b along axis x), h the distance

between dislocations in the wall, h = Ly). Lx was selected

equal to 150, 300, 600, 900 a , a is the lattice parameter.

Ly was selected equal to Ly = 33, 16,5, 10, 5a , which

corresponds to misorientation angles 2 = 1.5, 3.0, 5.0, 10◦.

The sink strength of LATB k2 was determined via

the diffusion length of SPDs before their absorption at

wall dislocations k−1 (k2 = 6/(〈N〉λ2), where 〈N〉 is the

average number of jumps performed by SPDs from their

formation till absorption at sink, λ2 = 3a2/4 the square

of SPD jump length in BCC-lattice). It was assumed

that an SPD was absorbed by a wall dislocation upon its

approach to the dislocation by distance lower than value

r0 = 3a . Such value of r0 was selected following [10],
where it had been shown that selection of values r0, lower

y

x

Lx

Ly 2r0

Figure 1. Schematic image of the simulation cell for OKMC

calculations of sink strengths of LATBs, consisting of set of parallel

dislocations (absorbing cylinders with radius r0). Rectangle is the

simulation cell. Dislocations outside calculation cell are images

formed by PBC.

than 3a , had no significant effect on calculated values k2,

since field interaction between SPDs and dislocations made

determining contribution to the value k2. For convenience,

the dimensionless value of the sink efficiency of wall

dislocations (or LATB dislocations) will also be discussed,

it is defined as

ξ = k2/ρd = k2Lx Ly , (1)

where ρd is the density of LATB-dislocations in crystal.

For each type of SPD and LATB, 105 trajectories were

simulated, this ensured level of relative accidental error 1%

(confidential probability 99%).

The sink strengths and efficiencies of LATB dislocations

not considering interaction between LATBs and SPDs

were also calculated. They are designated as k2
0 and

ξ0, respectively. In such calculations r0 varied in the

range 1−10a , Ly — in the range 5−66a , Lx — in the

range 150−900a . For each type of SPD and LATB,

106 trajectories were simulated, this ensured the level of

relative accidental error 0.3% (confidential probability 99%).

3. Results

Results of OKMC simulation show that values of sink

strengths of LATBs, consisting of dislocations in slip

systems 〈111〉{110} and 〈111〉{112}, coincide within cal-

culation inaccuracy. Further there are results only for the

LATB, consisting of dislocations 〈111〉{110}. Tables 1, 2 list

calculated values of sink efficiencies of LATB dislocations

〈111〉{110} for SIAs (ξ+) and vacancies (ξ−) for BCC

crystals Fe, V, respectively, and calculated by them values of

LATB bias factors (D = 1− ξ−/ξ+) are given in Table 3.

Values of sink efficiencies of LATBs not considering their

elastic interaction with SPDs are given in Table 4. From the

data in Table 3 it is clear that the value D:

1) varies with temperature within the range 15−30%;
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Table 1. Sink efficiencies of LATB dislocations in Fe

2 T , K
Lx = 150a Lx = 300a Lx = 600a Lx = 900a

ξ+ ξ− ξ+ ξ− ξ+ ξ− ξ+ ξ−

293 5.67 2.84 1.93 1.39 0.796 0.678 0.498 0.449

400 4.92 2.59 1.80 1.32 0.771 0.661 0.488 0.440

1.5◦ 600 4.12 2.36 1.66 1.25 0.742 0.643 0.476 0.432

800 3.64 2.25 1.57 1.22 0.720 0.635 0.466 0.428

1000 3.34 2.19 1.50 1.20 0.707 0.629 0.459 0.426

293 2.21 1.62 0.845 0.734 0.373 0.349 0.238 0.228

400 2.08 1.54 0.823 0.713 0.368 0.342 0.236 0.226

3.0◦ 600 1.91 1.44 0.792 0.693 0.361 0.339 0.234 0.224

800 1.80 1.41 0.771 0.681 0.356 0.336 0.232 0.222

1000 1.72 1.38 0.755 0.675 0.353 0.334 0.230 0.222

293 1.13 0.975 0.473 0.442 0.217 0.210 0.141 0.138

400 1.10 0.939 0.469 0.434 0.216 0.209 0.141 0.137

5.0◦ 600 1.06 0.906 0.459 0.426 0.214 0.207 0.140 0.136

800 1.02 0.889 0.452 0.422 0.213 0.206 0.139 0.136

1000 1.00 0.880 0.447 0.420 0.211 0.205 0.139 0.136

293 0.479 0.461 0.219 0.214 0.105 0.103 0.0686 0.0682

400 0.476 0.454 0.218 0.213 0.104 0.103 0.0686 0.0680

10◦ 600 0.471 0.448 0.217 0.212 0.104 0.103 0.0685 0.0679

800 0.467 0.447 0.216 0.211 0.104 0.103 0.0684 0.0678

1000 0.462 0.445 0.215 0.211 0.104 0.103 0.0682 0.0679

2) is approximately directly proportional to the distance

between dislocations in the wall Ly (respectively, inversely
proportional to the subgrain misorientation angle 2);
3) is approximately inversely proportional to the subgrain

size Lx ;

4) all other things being equal, is several times lower

for V than for Fe.

Low negative values D (|D| < 1%) for the LATB with

2 = 10◦ in V (Table 3) are due to random error of its

determination.

4. Analytical expressions for sink
strengths of LATBs not considering
interaction of LATBs with SPDs

The sink strength of two parallel planes limiting the

material is described as [13]

k2
0 = 12d−2 (2)

where d is the distance between absorbing planes. Then for

plain grains with width W and thickness of grain boundaries

Table 2. Sink efficiencies of LATB dislocations in V

2 T , K
Lx = 150a Lx = 300a Lx = 600a Lx = 900a

ξ+ ξ− ξ+ ξ− ξ+ ξ− ξ+ ξ−

293 3.90 3.17 1.61 1.46 0.730 0.695 0.470 0.457

400 3.55 2.85 1.54 1.38 0.712 0.677 0.463 0.447

1.5◦ 600 3.13 2.53 1.45 1.30 0.693 0.656 0.454 0.438

800 2.87 2.37 1.38 1.25 0.678 0.643 0.448 0.432

1000 2.68 2.28 1.34 1.22 0.667 0.636 0.443 0.429

293 1.77 1.65 0.763 0.738 0.354 0.348 0.231 0.228

400 1.70 1.57 0.746 0.719 0.351 0.345 0.229 0.227

3.0◦ 600 1.60 1.48 0.727 0.698 0.347 0.340 0.228 0.225

800 1.54 1.42 0.714 0.686 0.343 0.338 0.226 0.223

1000 1.49 1.40 0.704 0.681 0.341 0.335 0.225 0.222

293 0.992 0.957 0.445 0.437 0.211 0.209 0.138 0.137

400 0.967 0.933 0.440 0.433 0.209 0.208 0.137 0.137

5.0◦ 600 0.937 0.905 0.433 0.425 0.209 0.207 0.137 0.136

800 0.918 0.890 0.428 0.423 0.207 0.205 0.136 0.136

1000 0.904 0.882 0.424 0.421 0.207 0.205 0.136 0.135

293 0.455 0.452 0.214 0.212 0.103 0.103 0.0681 0.0682

400 0.451 0.448 0.213 0.212 0.103 0.103 0.0680 0.0680

10◦ 600 0.447 0.445 0.211 0.211 0.103 0.103 0.0679 0.0679

800 0.446 0.443 0.211 0.211 0.103 0.103 0.0678 0.0676

1000 0.444 0.443 0.211 0.210 0.103 0.102 0.0679 0.0678

δ0 we can write

k2
0 = 12

1 + f V

(W − δ0)2
=

12

W 2

1 + δ0W−1

(1− δ0W−1)2
, (3)

where f V = δ0W−1 is the volume fraction of sinks in crystal.

Multiplier in numerator (1 + f V ) occurs due to the fact that

SPDs are generated, among other regions of the crystallite,

inside the grain boundary. Comparison of formula (3)
with OKMC calculations for such configuration of sinks

(Figure 2) showed their full compliance within accuracy of

OKMC calculations (inaccuracy below 0.1% at confidential

probability 99%) at W = 150a and δ0 = 6a .
If a boundary consists of absorbing cylinders with

radius r0 (Figure 1), the distance between which is

Ly ≤ 2r0, then

k2
0 ≈ 12

1 + f V

(Lx − δ0)2
=

12

L2
x

1− δ0L−1
x

(1− δ0L−1
x )2

, (4)

where δ0 is the average width of boundary,

δ0 = r0
(

√

1− ε2 + ε−1 arcsin ε
)

, ε = Ly/2r0. (5)
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Table 3. LATB bias factor (in %) in Fe and V

2 T , K
Lx = 150a Lx = 300a Lx = 600a Lx = 900a

Fe V Fe V Fe V Fe V

293 49.8 18.8 28.0 9.2 14.9 4.8 9.8 2.8

400 47.2 19.7 26.8 10.1 14.3 4.8 9.8 3.4

1.5◦ 600 42.7 19.2 24.7 10.3 13.3 5.4 9.1 3.6

800 38.2 17.3 22.1 9.4 11.8 5.2 8.1 3.6

1000 34.3 15.0 20.0 8.6 10.9 4.6 7.1 3.1

293 26.5 6.8 13.1 3.4 6.6 1.7 4.2 1.2

400 26.0 7.5 13.4 3.7 7.0 1.7 4.5 1.2

3.0◦ 600 24.5 7.8 12.5 4.0 6.2 1.9 4.4 1.3

800 22.0 7.4 11.6 4.0 5.8 1.6 4.1 1.1

1000 19.9 6.4 10.6 3.2 5.3 1.6 3.6 1.1

293 13.8 3.6 6.6 1.7 3.2 0.9 2.4 0.4

400 14.7 3.5 7.3 1.5 3.3 0.6 2.8 0.2

5.0◦ 600 14.4 3.4 7.3 1.7 3.5 0.9 2.5 0.7

800 13.1 3.1 6.8 1.3 3.4 0.7 2.4 0.4

1000 12.1 2.5 6.0 0.8 2.8 0.9 2.1 0.4

293 3.8 0.7 2.0 0.7 1.2 0.0 0.6 −0.1

400 4.6 0.6 2.1 0.5 1.0 0.0 0.8 0.0

10◦ 600 4.9 0.4 2.0 0.3 1.3 −0.2 0.9 0.0

800 4.3 0.5 2.3 0.1 0.6 0.0 0.9 0.3

1000 3.8 0.2 2.1 0.3 0.9 0.5 0.4 0.1

At ε = 0 Eq. (4) transforms to Eq. (3) with δ0 = 2r0.
At ε = 1 (Ly = 2r0), δ0 = πr0/2.
Further for convenience we transfer from expressions

for k2
0 to expressions for ξ0 (ξ0 = k2

0Lx Ly ). Since δ0 ≪ Lx

at considered ranges of values of model parameters, Eq. (4)

can be simplified

ξ0 ≈ 12Ly L−1
x (1 + 3δ0L−1

x ). (6)

Comparison of calculation using Eq. (6) and OKMC

calculations for sinks configuration shown in Figure 1,

with Ly = 5a and r0 = 3a , showed their good compliance

(difference below 0.2%).

At ε > 1 (Ly > 2r0), the value δ0 becomes complex.

In this case, the approximating analytical expression can

be obtained by choosing such an analytical form that,

while Ly tends to 2r0, would transit into Eq. (6), and upon

Ly tendency to Lx would transit into known expression for

absorbing cylinders uniformly distributed in space [14]:

ξ0 = 2π(ln ρ−1 − 3/4)−1, (7)

y

x

Ly

L Wx =
W

d0

Figure 2. Schematic image of the OKMC model to calculate

the sink strength of flat grain boundaries with width δ0, separating

grains with width W . Rectangle is the simulation cell. All beyond

the calculation cell is the image formed by PBC.

where ρ =
√
πr0/L, L = Lx = Ly . The next expression has

the necessary properties:

ξ±0 (Lx , Ly , r0) = 12
Ly

Lx

×
(

1 +
6

π

Ly

Lx

(

ln
Ly√
πr0

− 3

4
− π

6
+

c±

r0

)

)−1

, (8)

in which, to further accuracy increasing of the description

of the calculated data, a term c±/r0 was added, where

indices
”
+“ and

”
−“ are used for SIAs and vacancies,

respectively, c+ = 0.37a , c− = 0.32a . Eq. (8) describes

OKMC data in Table 4 with minimum accuracy 0.6%.

5. Analytical expressions for sink
strengths of LATBs considering
interaction of LATBs with SPDs

The sink strength of a flat boundary (Figure 2), not

interacting with SPD, has form of Eq. (3), where δ0 is

the boundary thickness. If absorbing surface is a set

of cylindrical surfaces, not plain (Figure 1), then let’s

determine the effective thickness of the LATB δ±0 as

δ±0 = Lx −
(

12Lx Ly (1 + f V )/ξ±0
)1/2

, (9)

where ξ±0 are either values taken from Table 4, or calculated

according to Eq. (8).
Similarly to Eq. (9), for interacting LATBs we determine

δ± = Lx −
(

12Lx Ly (1 + f V )/ξ±
)1/2

. (10)

Then the effect of interaction of LATBs with SPDs can be

characterized by the value of increase in the effective thick-

ness of the boundary when considering such interaction:

ζ± = δ± − δ±0 =
√

12Lx Ly(1 + f V )

(

1
√

ξ±0

− 1
√

ξ±

)

.

(11)
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Table 4. Sink efficiencies of LATB dislocations not considering interactions between SPDs and LATBs in a BCC-crystal

2 T , K
Lx = 150a Lx = 300a Lx = 600a Lx = 900a

ξ+
0 ξ−0 ξ+

0 ξ−0 ξ+
0 ξ−0 ξ+

0 ξ−0

1 − − 1.233 1.245 − − − −

2 − − 1.497 1.503 − − − −

0.75◦ 3 2.470 2.476 1.682 1.687 1.028 1.030 0.740 0.740

6 − − 2.100 2.101 − − − −

10 − − 2.542 2.546 − − − −

1 1.428 1.444 0.926 0.933 0.545 0.547 0.385 0.387

2 − − 1.068 1.070 − − − −

1.5◦ 3 2.063 2.071 1.158 1.160 0.617 0.619 0.421 0.421

6 − − 1.342 1.343 − − − −

10 − − 1.516 1.517 − − − −

3.0◦

1 − − 0.579 0.581 − − − −

2 − − 0.631 0.632 − − − −

3 1.327 1.327 0.663 0.663 0.331 0.331 0.2205 0.2205

6 − − 0.722 0.722 − − − −

1 − − 0.380 0.381 − − − −

5.0◦ 2 − − 0.402 0.402 − − − −

3 0.860 0.858 0.414 0.415 0.2036 0.2040 0.1348 0.1349

1 − − 0.1990 0.1994 − − − −

10◦ 2 − − 0.2054 0.2055 − − − −

3 0.441 0.441 0.2101 0.2099 0.1023 0.1026 0.0678 0.0678

Values ζ±, obtained using Eq. (11) and OKMC-data from

Table 1, 2 and 4 are well described by the approximating

analytical dependence

ζ±(Lx , Ly , T ) = (Ly + p±)

(

1− Ly

2Lx

)

×
(

q±

Ly
− s± ln

T

T±

1

+
T

T±

2

)

, (12)

where p±, q±, s±, T±

1 , T±

2 are parameters listed in Table 5.

So, from Eqs. (10), (11) and considering that

f V = πr20/(Lx Ly ), for the value ξ
± the analytical expression

follows

ξ±(Lx , Ly , T )=12
Lx Ly + πr20

(

Lx −ζ±(Lx , Ly , T )−δ±0 (Lx , Ly , r0)
)2
,

(13)
where δ±0 (Lx , Ly , r0) is determined by Eq. (9),
ζ±(Lx , Ly , T ) is determined by Eq. (12), r0 = 3a . An-

alytically calculated values ξ± agree with OKMC data

(Table 1, 2) within 1%. As an example, Figure 3 presents

results of OKMC calculations and analytical calculations of

ξ+ using Eq. (13) at Lx = 150a for Fe.

Analytical expression for LATB bias factor, following its

definition (cl. 3) and Eq. (13), is written as follows

D(Lx , Ly .T ) = 1− ξ−(Lx , Ly , T )

ξ+(Lx , Ly , T )

= 1−
(

Lx − ζ +(Lx , Ly , T ) − δ+
0 (Lx , Ly , r0)

Lx − ζ−(Lx , Ly , T ) − δ−0 (Lx , Ly , r0)

)2

. (14)

Eq. (14) describes the OKMC data (Table 3) well under

all discussed combinations of parameters Lx , Ly , T . Figure 4
shows, as an example, a comparison of the OKMC data with

analytical expression (14) at Lx = 150a .
In the studied ranges of parameters, δ+

0 ≈ δ−0
and Lx ≫ δ− . So, Eq. (14) can be simplified

D(Lx , Ly , T ) ≈ 1ζ (Lx , Ly , T )

Lx

(

2− 1ζ (Lx , Ly , T )

Lx

)

,

(15)
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T, K
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x
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Q = 1.5°

Q = 5°

Q = 3°

Q = 10°

Q = 1.5°

Q = 5°

Q = 3°

Q = 10°

Eq. (8)

Eq. (13)

Figure 3. Temperature dependences of sink efficiencies of LATB

dislocations for SIAs ξ+ in Fe at the distance between neigbouring

LATBs Lx = 150a . Dark and light symbols are the OKMC data

considering and not considering interaction between LATBs and

SPDs, respectively. Solid and dashed lines are calculations using

Eqs. (13) and (8), respectively.

where

1ζ (Lx , Ly , T ) = ζ +(Lx , Ly , T ) − ζ−(Lx , Ly , T ),

ζ±(Lx , Ly , T ) are determined by Eq. (12).

T, K
200 400 600 800

20

40

60

0
1000

D
, 
%

Fe
a

T, K
200 400 600 800

10

15

25

0
1000

D
, 
%

V
b

5

20

Figure 4. Temperature dependences of LATB bias factor D in Fe (a) and V (b) at the distance between neighbouring LATBs Lx = 150a .
Symbols are the OKMC data. Solid lines are calculations using Eq. (14).

Table 5. Values of parameters of Eq. (12) for BCC me-

tals Fe and V

Parameters
Fe V

SIA (+) Vacancy (−) SIA (+) Vacancy (−)

p±, a −2.747 1.359 −3.304 −3.380

s± 0.9479 0.9833 0.7835 1.141

T±

1 , K 3984 538.4 3197 731.8

T±

2 , K ∞ 1297 ∞ 1526

q±, a 1.896 0 −3.369 0

6. Discussion

Let’s consider the reason for the large difference in values

of the LATB bias factor in Fe and V (Table 3, Figure 4).
For this as a value characterizing interaction between

LATBs and SPDs we take the maximum difference between

energies of SPD migration in different directions 1E . If

a SPD is trapped by a LATB, when 1E exceeds some

value Q, then difference of distances 1xQ = x+
Q − x−

Q , at

which 1E± = Q for SIAs (+) and vacancies (−), will

correspond as per physical sence to the value 1ζ , and, as

a consequence of Eq. (15), 1xQ ∼ D. The value of 1E
decreases with increasing x almost exponentially at x > h,
at that the exponent in absolute value for V crystal is almost

twice as much as for Fe crystal, due to the larger deviation

of the elastic anisotropy factor A = 2c44/(c11 − c12) in Fe

from unity (A = 2.3 for Fe, A = 0.81 for V, A = 1 in

isotropic case) [7]. Ratio of values 1E+(x)/1E−(x) ≈ 3

for x > h both for Fe, and for V. However, due to the
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Figure 5. Maximum difference between energies of SPD

migrations in different directions 1E vs. distance x to LATB

〈111〉{110} with period h = 30a (2 = 1.65◦) in Fe (curves 1)
and V (curves 2). Solid curves are for SIAs, dashed ones are for

vacancies.

different exponents for Fe and V, the difference in distances

differs significantly (by several times). For example, for

Q = 0.001 eV, values 1xQ for the LATB with h = 30a
(2 = 1.65◦) are equal to 11.2a and 4.5a for Fe and V

respectively (Figure 5), their ratio is ∼ 2.5 times. For other

LATBs, considered in this study, the value of this ratio is

approximately same, this agrees with same ratio for values

of the bias factor of the given LATB in Fe and V (Figure 4).
Thus, high elastic anisotropy of Fe results in that values of

bias factor of considered LATB dislocations are 2−4 times

higher than the corresponding values for V.

High values of dislocation bias factor contribute to the

nucleation and evolution of porosity in metals. Thus,

polygonization of grains, as a result of which the edge

dislocations are collected into low-angle tilt boundaries,

significantly (by several times) reduces their bias factor,

which helps to increase the material microstructure radiation

resistance. It is possible to form a polygonal structure by

appropriate thermomechanical treatments [15,16].

7. Conclusion

1. For low-angle tilt boundaries (LATBs) formed by

dislocation walls from straight edge dislocations in slip

systems 〈111〉{110} and 〈111〉{112}, in BCC metals Fe

and V, the sink strengths and bias factors for self-point

defects are calculated by the object kinetic Monte Carlo

method:

a) the sink strengths do not depend on the slip system of

dislocations forming LATB within calculation accuracy;

b) the bias factor changes with temperature within

15−30% in the range 293−1000K;

c) the bias factor is inversely proportional to the subgrain

misorientation angle and the subgrain size;

d) the LATB bias factor is significantly (several times)
less for V than for Fe (due to higher elastic anisotropy of Fe

compared to V).
2. Approximating analytical expressions are obtained for

the sink strengths and bias factors of LATBs in BCC

metals Fe and V.

3. LATBs have a significantly lower bias factor than

dislocations uniformly distributed over the bulk. LATB for-

mation in metals (polygonization) increases their radiation

resistance.
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