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The peculiarities of phase states of the triplet boson model for orthonickelates are investigated analytically and

by means of numerical simulations. The conditions of thermodynamic stability of homogeneous phases are found.
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agrees with the observed state of the system in numerical simulations by the classical Monte Carlo method.
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1. Introduction

Due to their unique physical properties RNiO3 orthoni-

ckelates (where R is rare earth or yttrium) are continuously

studied with the use of increasingly advanced experimental

methods [1,2]. This allows to clarify their phase diagram

which includes (for various compounds) the metal-like

non-ordered phase, charge ordered insulating phase, anti-

ferromagnetic phase with noncollinear magnetic structure

resulting in such unique physical properties as metal-

insulator transition. Some papers [2–4] reported discovery

of a phase coexistence (or phase separation) in nickelates

with Pr and Nd. In theoretical interpretation, there has

been no common opinion so far regarding the formation

mechanisms of orthonickelate’s electronic structure and

phase diagrams.

We have reviewed earlier a model where orthonickelates

are considered as Jahn-Teller magnetic materials which

are unstable with regard to anti-Jahn-Teller disproportion-

ation reaction [5] with formation of a system equivalent

to the system of effective spin-triplet composite bosons

moving in the non-magnetic lattice [6–9]. In the mean

field approximation (MFA) for various values of the

model nickelate’s parameters we have plotted the phase

diagrams [9] demonstrating the competition between the

charge ordering phases, antiferromagnetic insulator and

spin-triplet superconductor. Along with these phases,

more complicated states were possible when several or-

der parameters were non-zero. These states could be

implemented as either homogeneous or in the form of

phase separation. The well studied model of local sin-

glet bosons [10] with the use of numerical simulations

demonstrated that a homogeneous phase akin a supersolid

is metastable and unstable with respect to the phase

separation [11]. Within MFA at finite temperatures for

the triplet bosons model the phase separation also turns

to be more stable compared to homogeneous phases [9].
This study was aimed at proving this suggestion based

on Maxwell phenomenological construction [12] using nu-

merical simulation by classical Monte Carlo (MC) method

allowing to kinematically account of constant bosons con-

centration.

2. Mean field approximation

The general form of Hamiltonian for Jahn-Teller magnets

where the orbital degeneracy is removed not due to

Jahn−Teller effect, but due to anti-Jahn-Teller disproportion-

ation is given in papers [7,8]. For the rare-earth orthonicke-

lates RNiO3 the ion Ni3+ in the low-spin configuration t62g e1g
of NiO6 octahedron forms a Jahn-Teller center with ground

state orbital doublet 2E. As a result of disproportionation,

the electronic structure of the orthonickelate becomes a

formal equivalent of the system of local composite spin-

triplet bosons having configuration e2g ;
3A2g , which move

in the non-magnetic lattice with t62g centers. A simplified

Hamiltonian for the model nickelate with a simple cubic

lattice can be written as follows:

Ĥ = −t
∑
(i j)m

(B̂m+
i B̂m

j + B̂m+
j B̂m

i ) + V
∑
(i j)

n̂i n̂ j + J
∑
(i j)

σ̂ i σ̂ j .

(1)

Here, t is a transfer integral of the spin-triplet bo-

son with conservation of the spin projection m = ±1, 0,

V parameter of the inter-center charge-to-charge interaction,

n̂i operator of the bosons number on i-th site, J ex-

change integral, σ̂i operator of boson spin on i-th site.

For bosons creation operators B̂m+
i on i-th site in the

state with projection of spin m it is convenient to in-

troduce Cartesian components with the help of relations

B̂m
xi = 1

2
(B̂m+

i + B̂m
i ), B̂m

yi = − i
2
(B̂m+

i − B̂m
i ), and use vector
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operators B̂m
i = (B̂m

xi , B̂m
yi). The explicit form of operators

matrices is given in paper [9]. It shall be noted that

Hamiltonian (1) is a generalized version of a well-know

spinless hard-core bosons model [10] for the spin-triplet

bosons case.

MFA for model (1) is reviewed in paper [9]. The system

phase states are characterized by mean values Bm
λ(i) = 〈B̂m

i 〉,
nλ(i) = 〈n̂i〉 and Sλ(i) = 〈σ̂ i〉, where for the two mutually

inter-penetrating lattices A and B of a simple cubic lattice

we introduced the index λ(i). Phase diagrams were plotted

in variables (T, n), where T is temperature, n = 〈6i n̂i〉/N is

the bosons concentration.

At high temperature the non-ordered (NO) phase, where

Bm
λ̄

= 0, S = 0 and nA = nB = n. is activated. If the

temperature is quite low the solutions which can be called

pure phases occur when only one order parameter is

non-zero. This is the charge-ordered (CO) phase with

x = (nA − nB)/2 6= 0, antiferromagnetic (AFM) phase with

SA = −SB 6= 0 and boson superfluid (BS) phase with

Bm
λ 6= 0. Also, under certain conditions, solutions for mixed

phases can be implemented, when several order parameters

are non-zero, e.g., phase akin supersolid in the local bosons

model. However, as with local bosons model [10], free

energy of mixed phases in model (1) in MFA is higher

than the free energy of the pure phases separation state.

The phase separation is set by Maxwell construction [12]:
at a given temperature the boundary concentrations ni

corresponding to pure phases i = 1, 2 can be found from

the concentration ratios of chemical potential of phases:

µi(n, T ) = µ∗, where µ∗ is the point of intersection of

specific grand potentials of phases, ω1(µ
∗, T ) = ω2(µ

∗, T ).
Free energy has the following form

f (n, T ) = m1 f 1(n1, T ) + m2 f 2(n2, T ), (2)

where f i are pure phases specific free energies calcu-

lated at boundary concentrations ni , n1 ≤ n ≤ n2, and

the volume fractions mi of phases are set by the ratios

m1 = (n2 − n)/(n2 − n1), m2 = (n − n1)/(n2 − n1).
It should be noted that the Maxwell construction (2) is

a hypothesis that looks reasonable from the physical stand-

point, however, it needs an independent confirmation. For

the local spinless bosons the authors have demonstrated [11]
the thermodynamic instability of the homogeneous phase

and correctness of the phase separation suggestion using

numerical simulation by the quantum MC method. In this

study we use classical MC method which allows a direct

observation of the current system state. For clarity, we’ll

consider a 2D square lattice (z = 4).
Since one of the parameters of the simulated system

is the bosons concentration, it is important to consider

the concentration dependence of chemical potential µ for

different phases. Figure 1 illustrates the dependences of CO

phase chemical potential in MFA for several temperature

values. The boundary concentrations are defined by

expression for critical temperature of the charge ordering,

TCO = zV n(1− n), which coincides with the local bosons
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Figure 1. Chemical potential of CO phase z = 4, V/J = 1

for various T . Boundary concentrations are defined by the ratio

T = 4V n(1− n).

model case [10]. Condition of phase stability corresponds

to positive value of derivative (∂µ/∂n)T . As seen from

Figure 1, the CO phase is stable at all finite tempera-

tures, however, for low temperatures the stability condition

worsens, (∂µ/∂n)T → 0, for all concentrations except for

n = 0.5. In terms of selecting the MC algorithm option

for numerical simulation, the flat sections of (∂µ/∂n)T

dependence make it difficult to carry out the calculations

within a grand canonical ensemble: at sufficiently low

temperatures it is required to significantly increase both,

the µ partition, and the number of MC steps.

Concentration dependencies of chemical potential of

BS phase in MFA are shown in Figure 2 at V = 0.

In n < 0.5 area they can be expressed by formula

µ = z [V n + t(2n − 1)] for the local bosons model. When

n > 0.5 the ratios of BS phase chemical potential versus

n are non-linear and can have sections with (∂µ/∂n)T < 0.

The boundaries of respective BS phase stability areas are

shown in Figure 2. The states in the area between the

stability boundary at a given V and curve for BS phase

critical temperature TBS = z t(4n − 3)[3 ln n
3(1−n) ]

−1 on the

right will correspond to the phase separation into BS and

NO phase macroscopic domains. The tricritical point A

divides the curve TBS into transition lines of 2-d order on

the left and 1-st order on the right of A. Position of A point

is shifted to n = 1, and the size of phase separation area on

phase diagram is decreased with the growth of V .

Instability of homogeneous AFM phase in MFA at low

values V/J is shown in Figure 3. The dependencies on the

left panel of Figure 3 for the chemical potential versus n at

V = 0 have sections with negative derivative at rather low T .
The boundaries of stability of homogeneous AFM phase
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Figure 2. a is the chemical potential of BS phase at z = 4, t/J = 1, V = 0 for different T . b are the boundaries of BS phase stability at

different values V (z = 4, t/J = 1). Critical temperature TBS = 4t(4n − 3)[3 ln n
3(1−n)

]−1.
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Figure 3. a — chemical potential of AFM phase at z = 4, J = 1, V = 0 for various T . b are the boundaries of AFM phase stability at

different values V (z = 4, J = 1). Critical temperature TAFM = 8Jn/3.

are shown in the right panel in Figure 3 for several values

V/J . Homogeneous AFM phase is stable in the area to

the right and above these boundaries and below critical

temperature TAFM = 2z Jn/3, and in the area to the left and

below these boundaries and below TAFM a phase separation

occurs with separation into macroscopic domains of AFM

and NO phases. The tricritical point B divides the curve

TAFM into transition lines of 1-st order on the left of and

2-d order on the right of B. Position of B reaches n = 0

at V/J = 0.75, and at V/J > 1 homogeneous AFM phase

becomes stable at T < TAFM at all n.

3. Boson concentration condition taken
into account in classical Monte Carlo
method

The nature of chemical potential dependencies of various

phase states of the model indicates the complexity of its

numerical simulation by MC method within formalism of

a grand canonical ensemble. Further, we’ll consider a

classic algorithm with a kinematic accounting of the bosons

concentration. One of the benefits of this algorithm is a

possibility to visualize the evolution of the lattice states
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(averaged in MC steps) with a temperature at specified

concentration.

Let’s describe the system state using quasi-classical wave

function |9〉 = 5i |ψi〉, where for the on-site wave function

|ψi〉 = c(i)
1,11|1, 11〉i + c(i)

1,10|1, 10〉i

+ c(i)
1,1−1|1, 1−1〉i + c(i)

0,00|0, 00〉i . (3)

In the wave functions |n, Sm〉 in formula (3) n is the num-

ber of bosons, S spin value, m value of z -projection of the

spin. Coefficients c(i)
n,Sm = r (i)

n,Smeiφ(i)
n,Sm , φ

(i)
n,Sm ∈ [0, 2π], are

normalized to 1. This allows selecting their parametrization

as follows:

r (i)
1,11 = sin θi sinψi cosϕi , (4)

r (i)
1,10 = sin θi cosψi, (5)

r (i)
1,1−1 = sin θi sinψi sinϕi , (6)

r (i)
0,00 = cos θi , (7)

where θi , ψi, ϕi ∈ [0, π
2
]. Homogeneous sampling in the

state space on the site corresponds to a uniform distribution

of points on the surface of a unit sphere in 8D coordinate

space (x (i)
n,Sm, y (i)

n,Sm), where c(i)
n,Sm = x (i)

n,Sm + iy (i)
n,Sm . This can

be achieved by generation of 7 random values: α = sin6 θi ,

β = sin4 ψi , γ = sin2 ϕi and ξn,Sm = φ
(i)
n,Sm/2π. that are

uniformly distributed in section [0, 1]

Since bosons have the on-site boson density ni = 〈n̂i〉
= sin2 ϕi = α1/3, the distribution function F(ni) and corre-

sponding probability density are expressed as

F(ni) =

n3i∫

0

dα = n3
i , f (ni) = 3n2

i . (8)

For a pair of sites the probability density that the first

site has bosons density of n1, the second site has density

of n2, is equal f (n1) f (n2), since the states in different sites

we consider as independent variables. From the sections of

function f (n1) f (n2), that correspond to a mean density on

the pair of sites n̄ = (n1 + n2)/2, the probability densities

and distribution functions for n1 with the set value n̄ can be

obtained:

f 1(n1; n̄) =
n2
1(2n̄ − n1)

2

n1,max∫
n1,min

x2(2n̄ − x)2dx

, (9)

F1(n1; n̄) =

n1∫

n1,min

f 1(x ; n̄)dx

=
ϕ(n1) − ϕ(n1,min)

ϕ(n1,max) − ϕ(n1,min)
, (10)

where

ϕ(x) =
4n2x3

3
− nx4 +

x5

5
, (11)

n1,min and n1,max are the limits of a range where density can

variate on one of the sites at a set value n̄:

n1,min = n̄−1/2 + |1/2− n̄|,

n1,max = n̄ + 1/2−|1/2 − n̄|. (12)

As a result, the algorithm for selecting the states on a

pair of sites that provides on each step of MC the constant

bosons density in the system can be formulated as follows.

1. For the selected pair of sites we need to define the

mean density: n̄ = (n1,0 + n2,0)/2.
2. Let’s find the new value n1 on one of the sites

from the equation F1(n1; n̄) = γ , where F1 is defined

by expression (10), γ — a random variable uniformly

distributed in [0,1].
3. Let’s find the new value n2 on the second site:

n2 = 2n̄ − n1.

4. Let’s find the values θi = arcsin(
√

ni ), i = 1, 2.

5. Now we need to find φi = arcsin( 4
√
β i) and φi =

= arcsin(
√
γi), i = 1, 2, where βi and γi are random

variables uniformly distributed in [0,1].

6. Let’s calculate r (i)
n,Sm by formulae (4)−(7).
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a
x

0 0.2 0.4 0.6 0.8 1.0
n

Figure 4. Comparison of phase diagrams, obtained in MFA and

by MC method for the lattice of N = 96× 96 sites at z = 4,

V/J = 4, t/J = 1.5. The temperature scale is set for MFA

T (1)
c,max = 4J, for MC method T (2)

c,max = 0.63J. Homogeneous colors

indicate the areas of different phases of MFA, dash lines are the

boundaries of the phase separation areas in MFA. Rhombi, circles

and triangles show the points, where values calculated by MC

method for the order parameters for BS, CO and AFM phase

reach the threshold value of 1% of the maximal possible value.

Points A, B and C correspond to the system states shown in

Figure 7.
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Now we need to generate the uniformly distributed ran-

dom phases 0 ≤ φ
(i)
n,Sm ≤ 2π, i = 1, 2, and find new coeffi-

cients of the wave functions on the sites: c(i)
n,Sm = r (i)

n,Smeiφ(i)
n,Sm .

When changing the system states we use standard

Metropolis algorithm of MC method.

4. Results

Figure 4 gives comparison of the phase diagram in

MFA and results of simulation by classical MC method

allowing to provide the boson concentration constancy

kinematically. The temperature scale is set by maximal

critical temperature that has sufficiently different values for

MFA and MC method. With selected parameters z = 4,
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Figure 5. Temperature dependencies of order parameters for

CO phase (a), BS phase (b) for concentrations n = 0.1−0.5.
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Figure 6. Temperature dependencies of order parameters for

CO phase (a), AFM phase (b) for concentrations n = 0.5−0.9.

V/J = 4, t/J = 1.5 for MFA the maximal temperature

will be the critical temperature of CO phase at n = 0.5:

T (1)
c,max = 4J . Areas of homogeneous colors indicate different

phases of MFA, dash lines designate the binodals. At

0.15 < n < 0.50 there’s an area of phase separation for BS

and CO phases, and with 0.5 < n < 1.0 — for CO and

AFM phases.

Numerical simulation was carried out for a square lattice

of N = 96× 96 sites with periodic boundary conditions

within temperature T/J range from 0.01 to 0.80 with a step

0.01 for bosons concentrations, from 0.05 to 0.95 with a step

0.05. For every temperature value the 4 · 106 steps of MC

were fulfilled. As order parameters we calculated the mean
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BS

CO

CO

AFM

AFM

CO

a b c

Figure 7. Lattice state from N = 96× 96 sites for z = 4, V/J = 4, t/J = 1.5 at a — n = 0.25, T/Tc,max = 0.02 (point A in Figure 4);
b — n = 0.65, T/Tc,max = 0.17 (point B in Figure 4); c — n = 0.75, T/Tc,max = 0.25 (point C in Figure 4).

values as follows: for CO phase x = 1
N |6i (−1)i ni |, where

ni is the on-site boson concentration, (−1)i = ±1 in various

sublattices, for BS phase B = 1
N |6iBi |, for AFM phase

L = 1
N |6i (−1)iSi |.

Temperature dependencies of order parameters for dif-

ferent concentrations are given in Figures 5 and 6. To

estimate the critical temperature we used a value with which

the corresponding order parameter reached the threshold

value of 1% of the maximal possible value. With selected

parameters T (2)
c,max = 0.63J is obtained at n = 0.55 for

CO phase. This value was used as a temperature scale

in Figure 5 and 6 and in Figure 4 for this MC calculations,

where the corresponding points for CO phase are designated

by circles, for BS phase by rhombi, for AFM phase by

triangles. The white line connecting these points is given

for graphic representation only. Though the estimate of

critical temperature is sensitive to the threshold value, the

view of the phase diagram T/Tc,max generally remains the

same. More extensive analyses with the estimate of critical

temperatures as per scaling theory are planned to be made

in the future.

Comparison of the phase diagrams obtained through

MFA and MC method demonstrates that, though the

ratio of the temperature scales is T (1)
c,max/T (2)

c,max ≃ 6.3, the

ratio between maximal critical temperatures of CO and

AFM phases persists. At that, for BS phase this ratio turns

out to be significantly less than in MFA. Also we can see

relative reduction of areas of the ordered phases in the phase

diagram, obtained by MC method compared to MFA, and

the shift of the critical temperature maximum of CO phase

towards the point n = 0.55.

Temperature dependencies of CO phase order parameter

in Figure 5, a at n = 0.2−0.4 have an inflection in those

points where a non-zero value of BS phase order parameter

appears in Figure 5, b. The system state at n = 0.25 and

T/Tc,max = 0.02 is shown in Figure 7, a. The areas with

the non-zero mean local value of order parameter for only

one of the phases are highlighted by different colors. Thus,

phase separation of BS and CO phases correspond to the

system state in point A in Figure 4.

The quantities x and L in Figure 6 for n = 0.55−0.80 also

have temperature intervals where both order parameters are

non-zero. The phase states at n = 0.65 and T/Tc,max = 0.17

and at n = 0.75 and T/Tc,max = 0.25, which corresponds to

the points B and C in Figure 4, are shown in Figure 7, b

and c. In both cases the phase separation into macroscopic

areas of CO and AFM phase takes place, and in C point

the fraction of AFM is greater than in B, which is well

consistent with MFA results.

5. Conclusion

The peculiarities of the triplet bosons model phase

states for the orthonickelates were investigated by MFA

and using numerical simulation via MC method. It was

demonstrated that, in contrast to the singlet local bosons

model [10], the BS phase of triplet bosons was unstable at

high concentrations relative to the phase separation with a

non-ordered phase. Also, AFM phase is unstable at small

inter-center charge-to-charge interaction, V/J < 1. The

numerical simulation by classical MC method demonstrated

that instead of phases with several nonzero order parameters

a phase separation takes place. This is well consistent

with MFA results [9], where Maxwell construction was

used to analyze the thermodynamic properties of the phase-

heterogeneous state.
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