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Modeling of the kinetics of laser hardening of a titanium alloy
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One of the key mechanisms resulting in the hardening of titanium alloy products subjected to compression by

a shock wave resulting from the action of a short and powerful laser pulse is considered. It was shown that the

induced jump in the dislocation density at the grain boundary temporarily shifts the equilibrium towards grains

of smaller radius. The grain kinetics model is studied in the dimensional space using the famous Lifshitz−Slezov

method plus a small generalization of it. The dynamics of the average grain size was calculated and an asymptotic

grain size distribution function was obtained as a result. The dynamic equations take into account the entropy

of dislocations. The results of processing of experimental data on residual stresses on the sample surface after

its processing by a single pulse are also presented. Based on the residual stresses it is possible to estimate the

maximum temperature that was reached during plastic deformations.
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Introduction

Laser peening is currently one of the most promising

and widely used methods of hardening products made of

steel, aluminum and titanium alloys abroad. Hardening of

materials by peening with a shock wave initiated by laser

radiation (LSP, Laser Shock Peening) [1–3] is a complex

surface treatment process that allows creating compressive

stresses in various materials not only on the surface (several
microns), but also at depths up to 1−2mm.

The laser hardening process has been used in the

aerospace industry to increase the fatigue strength of

compressor blades made of titanium alloys [4–6]. An

increase in the fatigue strength threshold of the product

is associated with the induction of compressive residual

stresses. Grain grinding also results in hardening. Pulse

duration, spot diameter on the sample, laser beam energy,

and mechanical properties of the material undergoing LSP

are the most important factors determining the magnitude

of residual stresses on the surface, as well as the stress

distribution over the sample depth.

The description of the LSP surface treatment technology

for various products contains some details specific to the

laser hardening process (Fig. 1): the treated surface of

the product is covered with a layer that is opaque to laser

radiation with a low evaporation temperature, for example,

black paint, aluminum foil or sticky vinyl tape; a wide

transparent water jet with a thickness of 2−3mm is formed

on top of this layer.

The energy of the laser pulse is absorbed by the

opaque layer, which results in its heating, evaporation, and

ionization of
”
sacrificial“ layer, which is bounded on one

side by the surface of the product, and by a water flow

prevents plasma expansion on the other side (Fig. 1).

The limiting medium is one of the key factors in the

hardening process, since most of the energy of the formed

plasma is released into the free space around the target

without limiting medium. The retaining medium contributes

to the formation of a powerful shock wave, which ensures

the strengthening of the material. Incident laser radiation

does not result in heating of the metal surface, since it does

not completely destroy the absorbing layer, which has low

thermal conductivity, and energy from the plasma is not

transferred to the metal surface, which could lead to surface

damage.
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Figure 1. Laser hardening operation diagram: 1 — water nozzle,

2 — sample, 3 — laminar flow, 4 — plasma, 5 — laser radiation,

6 — shock wave, 7 — absorbing layer.
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1. Measurement of stresses in
the near-surface layer before and after
laser treatment

Parameters of the neodymium-activated phosphate glass

laser system Nd3+: pulse duration from 10 to 25 ns, laser

pulse energy up to 50 J with a nominally rectangular spatial

profile of laser radiation, the spot size on the sample varies

from 5 to 10mm depending on the experimental task.

The power density of the laser beam on the surface to

be treated can be varied in the range of 3−10GW/cm2.

So, high-pressure plasma is the shock wave source, water

is the inertial retaining layer, adhesive PVC tape is the

ablation layer. The shock wave (SW) creates a high-

pressure zone of the order of 3−10GPa, which implements

the regime of plastic deformations with the increase of

temperature primarily along grain boundaries. Thermal

expansion followed by cooling results in residual stresses,

which are detected by X-ray diffraction analysis and electron

spectroscopy in the metal surface layer before and after laser

treatment.

We worked with samples made of titanium alloy, in which

black vinyl tape with a rubber adhesive layer was used as

an absorbing coating. The thickness of the adhesive tape

was 150 µm. Experiments were conducted that showed

that the use of vinyl black tape is the most technologically

suitable option.

The initial level of residual stresses in the near-surface

layer of the working sample was preliminarily measured.

Reference zones with size of 15× 15mm were cut out by

electric discharge machining after processing the samples

with laser radiation in various modes and then these

references zones were studied using X-ray diffractometer.

Macrostresses were measured using Dron-8 X-ray diffrac-

tometer produced by NPP
”
Burevestnik“. The value of

residual macrostresses was determined using the X-ray line

of Ti (10.4), for which the Wolf−Bragg angle is equal to

130.88. The Poisson ratio of 0.32 and the Young’s modulus

of 112GPa, were used in the calculation. The measurements

showed that the internal stresses in the near-surface layer

for the initial sample are 273MPa. The induced residual

stresses are 376MPa when the sample is treated with a

pulse with a power density of 4.9 GW/cm2. The induced

residual stresses reached 436MPa in a sample processed by

a single laser pulse with a power density of 5.2GW/cm2.

Since the induced residual stresses were of the order

of 400MPa, and the coefficient of thermal expansion of

titanium is 9 · 10−6 K−1, these data can be used to estimate

the heating of the sample to 1T = 400K from the room

temperature. Information about the temperature of the grain

shell of the order of 700K is used for calculation of the

intergranular diffusion coefficient.

Since laser hardening is accompanied by a change of the

grain size, we will analyze the causes and consequences of

grain size dynamics in the main part of this paper. We will

first point out that physical processes occur on completely

different time scales: laser pulses — tens of nanoseconds,

pressure pulses behind the SW front — microseconds,

and diffusion processes along grain boundaries — seconds.

Therefore, the grain size kinetics is a process
”
spreaded“

over time, which does not end after the attenuation of SW.

The dynamics of grain sizes is associated with the entropy

in a number of studies [7].

2. Dislocations as a source of residual
entropy that does not disappear
at zero temperature

Entropy is an important concept that follows energy in

importance. Entropy is a measure of disorder. Disorder, like

the internal energy of atoms, increases with temperature

because of the increase of thermal vibrations of lattice

atoms; the spectrum of such phonon vibrations is limited

by the Debye temperature 2. The entropy in the case of

T ≫ 2 in terms of one atom is s = k[4 + 3 ln T
2
], where

k is the Boltzmann constant. The entropy of thermal

vibrations generally inherits the properties of entropy in

the gas aggregate state, except for the introduction of

an upper bound on the spectrum of thermal vibrations

in accordance with 3Nν vibrational degrees of freedom.

Many metals in reality are polycrystals. And each single

crystal (or grain) can have a structure that is far from

ideal. New aspects of disorder arise from lattice defects.

Zero-dimensional defects of the crystal lattice are the most

common. Their density increases with the increase of

temperature. The most important ones for further analysis

are one-dimensional defects called dislocations. In this case,

the ideal order is distorted either along the edge dislocation

due to an extra atomic half-plane, or along the centerline

of the screw dislocation, when a virtual cut is made along

it and one side of the crystal is shifted by a lattice step.

The occurrence of such defects results in additional lattice

stresses, and they cannot be eliminated by moving a single

atom. Since the case of such defects is a property of the

crystal geometry, let us agree to call such defects topological

for convenience, since their formation and disappearance

are associated with the movement of a large group of atoms.

The dimension of dislocation defects is equal to one, since

the properties of crystal ordering and lattice periodicity

are broken at the core line. The dislocation deformation

of a crystal has the following property from the point of

view of elasticity theory: the elastic displacement vector

receives a finite increment equal to the Burgers vector when

traversing any closed contour spanning the dislocation line.

The main property of dislocations is that their stress field

affects neighboring dislocations. As a consequence, the

stress value for the plasticity threshold on the surface of

a single crystal exceeds the plasticity threshold inside the

crystal structure [8]. The interaction of dislocations reduces

the shear stress inside the crystal by several times the value

of the stress at the boundary. And it becomes stronger as

the radius of the single crystal decreases! The effect of grain
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size on the strength of polycrystalline metals is given by the

well-known Hall−Petch ratio [9.10]:

σA = σ0 + kHPD−1/2. (1)

Here σA — yield stress (plastic yield stress), σ0 — stress

to overcome friction to dislocation motion in the absence

of obstacles, kHP — slope of the Hall and Petch curve

(H−P), D — grain size. These values are σ0 = 78.45MPa,

k = 0.40MN/m3/2 for titanium in a hexagonal package.

This behavior is bounded from below by the grain size

dc = 10− 50 nm.

According to Lie’s theory [11], the yield strength is the

stress required to overcome an obstacle in the form of

forests of dislocations near grain boundaries. In this case,

the yield stress is the collective effect of a set of dislocations

that creates a threshold stress preventing the movement of

dislocations. For metals

τ = τ0 + αGb
√
ρ, (2)

τ0 — initial friction stress, ρ — dislocation density, α

of the order of 0.4, G — shear modulus, b — Burgers

vector(2.57 · 10−10m). It follows from experimental obser-

vations that the dislocation density is inversely proportional

to the grain diameter D. The number of dislocations during

deformation is proportional to the number of protrusions at

the grain boundary or the area of grain boundaries per unit

volume (we assume that the density of protrusions per unit

area weakly depends on the grain dimeter). Then ρ ∝ Sv ,

but Sv is inversely proportional to the grain diameter

(Sv = 3/D). If the grain is considered round and large

enough, then the angle ϑ between dislocations at the

boundary is ϑ = d/D (d — distance between dislocations).
On the other hand, the angle of rotation of the grain

boundary surface at a step of one dislocation is given by

the ratio between the lattice pitch b (the Burgers vector

and the actual height of the protrusion) and the distance

between dislocations ϑ = b/d and the dislocation density is

inversely proportional to the average square of the distances

between them ρd2 = 1:

ρ ∝ 1

bD
. (3)

Substituting (3) in (2) results in Hall−Petch formula,

where the constant kHP is of the order αG
√

b. It

should be noted that G
√

b = 0.6MN/m3/2. The value

Gb
√
ρ = Gb/d = 2G 1

2

∂uy

∂x = 2Guxy = σxy defines the off-

diagonal terms of the strain tensor. The relation

bD = d2 = ρ−1, which follows from two definitions of grain

surface curvature, sets the condition for the equilibrium of

grain size and dislocation density. If it is distorted, the

system evolves to meet this condition, for example, if the

dislocation density has changed due to external interference.

The polycrystalline structure is a significant factor for the

properties of titanium alloys considered in this problem

statement. The properties of a single crystal have been

studied for a long time. Data of the equation of state [12]
are known (for the spherical part of the stress tensor), and
in the case of the use of off-diagonal part of the stress

tensor, the peculiarities of sliding of single crystals along

the sliding planes of are known [13]. The required threshold

stresses depend on the choice of plane and diameter of

the single crystal. There are many degrees of freedom

associated with the packing of grains and their size in the

case of a polycrystalline structure. Therefore, the equation

of state alone is not sufficient, since it corresponds only to

volumetric compression. Off-diagonal elements of the stress

tensor have a threshold above which plastic deformations

begin, and the Young’s modulus works below. Here, the

choice of parameters of the Johnson−Cook model, which

describes strain hardening as a function of plastic strain and

plastic strain rate, comes to the fore. The stress of plastic

deformation (flow or extrusion) increases as the strain rate

increases

Y = σy

(

1 + C ln

∣

∣

∣

∣

ε̇

ε̇0

∣

∣

∣

∣

)

, σy = A + Bε0.5. (4)

The value σy for titanium alloy VT6 is determined by the

constant [14] A = 900MPa, B = 509MPa, C = 0.03. The

dependence of the constant A on the dislocation density in

the sample at a given phase state of matter is given by the

formula (2). A = 300MPa for pure titanium.

The superposition of deformation on the crystal structure

of the grain leads to a shift of dislocations along it by

a certain distance. The equation relating the relative

amount of strain and dislocation shear distance is known

as
”
Taylor−Orowan’s equation“. The plastic shear strain ε

is proportional to the dislocation density ρ and the Burgers

vector b:
ε = kρbl̄. (5)

Here l̄ — the average dislocation path. It should be borne

in mind that the strain does not coincide with the direction

of motion of dislocations, which introduces a correction

factor k of the order of one into the formula. Obviously,

the average displacement of l̄ is limited by the distance

between the dislocations of 1/
√
ρ and the grain size. A

formula describing the increase of dislocation density under

rapid deformations can be obtained by differentiating the

Taylor−Orowan’s equation (υ — dislocation rate):

ρ̇ =
ε̇

bl̄
− ρυ

l̄
. (6)

The density of dislocations increases from the center of

the grain to its boundaries, and dislocations on the grain

surface can disappear, annihilate with porosity or other

dislocations with the release of stored energy, stall at the

energy barrier, or gradually collapse through the diffusion of

surface atoms along the grain boundaries. The dislocation

should overcome the Peierls−Nabarro potential barrier for

movement [15]. Its shape is close to sinusoidal. It is

possible to show using a dimensionless model of a physical

pendulum with the Hamiltonian H = 1
2
ẋ2 − ω2

0 cos x that
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the separatrix of the finite motion corresponds to the energy

of the system H/ω2
0 = 1. The motion is finite in the

case of lower energies, otherwise it is infinite. Analysis

in elliptic functions shows that the complexity of the

dislocation oscillation spectrum increases as ln
√

32

|H/ω2
0
−1|

in the neighborhood of the separatriss. An increase of the

number of excited harmonic oscillations changes the entropy

of dislocations, which is directly related to the temperature

of the dislocation subsystem. The nonlinear dependence

of entropy, and hence free energy, on proximity to the

separatriss makes dislocation dynamics a complex function

of stored energy, and interaction with phonons complements

it with the viscous friction effect [16]. In view of the fact

that the entropy of moving dislocations requires a strict

definition, which is currently absent, we will limit ourselves

in this paper to the influence of the geometric entropy of

topological defects on the grain size kinetics. Analysis of

kinetics taking into account the entropy of dislocations as a

function of the temperature of the dislocation subsystem —
a topic for future research. The field of deformations of

a moving dislocation was considered earlier in the paper

in Ref. [17] and the review in Ref. [18], in which the

field nature of the equations of motion of dislocations was

substantiated and the effective mass of dislocations was

introduced.

The effect of the rate of plastic deformations on the

free energy value was considered earlier in Ref. [19]. The

point of slope change corresponds to the plastic deformation

threshold when the slope of the stress curve changes on the

graph of stress values due to deformation. The activation

energy of plastic deformation turned out to be proportional

to the natural logarithm of the strain rate ε̇ in units of the

characteristic scale ε̇0 = 107 s−1. The stress value oscillates

as a function of increasing plastic deformation at low strain

rates ε̇ = 10−2−10−3 s−1 [20]. The oscillation period is

related to grain size. Plastic deformations occur in the

form of sliding along grain boundaries or sliding dislocations

along sliding planes. The accumulation of dislocations at

grain boundaries affects the strength of grains and the

sliding of grains along their boundaries. The dislocation

energy is about Ub = 2 eV per one link of the dislocation

core.

The metal grain boundary is a collection of a large

number of dislocations covering the grain surface. The

metal phase is the same on both sides of the interface, but

the orientation of the crystallographic axes is different. This

orientation defect can serve as a source of new dislocations

during rapid compression. Any impurity inside the grain

can also result in the generation of dislocations under heavy

load. The energy of the grain boundary is assumed to

be equal to the total energy of all dislocations per unit

surface. A single area of the grain surface has the following

energy [15]:
Egb(ϑ) = E0ϑ(A − lnϑ),

E0 =
Gb

4π(1 − ν)
. (7)

Here we introduce the angle ϑ = b
d , which is equal to the

ratio of the length of the Burgers vector b to the distance

between dislocations d on the grain surface of a given

size D. The surface energy sums up the contribution of

stresses generated by dislocations. Grain boundary energy

measurements for titanium [21] at 1100◦C give a value

of 1 J/m2 (this is 0.4 eV/atom), while the formation of a

single vacancy in α-titanium requires U = 1.27 eV [22]. We

emphasize that we are talking about the surface at the grain

interface, and not at the open boundary. It is necessary to

overcome the activation energy associated with the periodic

potential along the interface for the occurrence of diffusion

along grain boundaries. As the grain boundary temperature

increases from room temperature to 720K, the activation

energy decreases due to an increase of the entropy of

atoms 1G = U − sT in the heated lattice. Measurements

of the activation energy also showed its dependence on

the grain size. For instance, the change of the typical

grain size in titanium from coarse-grained to submicron

size (⊘ = 0.8µm) [23] reduces the activation energy of

self-diffusion along grain boundaries from 140 to 74 kJ/mol.

The dependence of the activation energy on the grain size

emphasizes the fact that the Gibbs free energy is also

affected by the entropy of topological defects, i.e., there is

also a contribution of the energy of defects forming the grain

boundary in addition to the action of heated atoms. Since

this surface energy depends on the dislocation density and

increases with the decrease of the grain size, the Gibbs free

energy (in terms of one atom) also contains a term tied

to the entropy of dislocations 1G = U − sT − b2Egb(ϑ).
Rapid deformations caused by the SW result in plastic

deformations, where the lattice layers shift instead of a real

change in volume, giving rise to dislocations. Using the

variable ϑ , the free energy can be represented as the dif-

ferential of two variables dF(T, ϑ) = −s(T )dT − s(ϑ)dϑ ,
the first term is the thermal entropy of atoms s(T ), the

second term by analogy is the entropy of dislocations

s(ϑ) = −
(

∂Fgb

∂ϑ

)

T
= E0b2(A − 1− lnϑ) > 0. Entropy is

positive, so ϑ < ϑmax ≈ 1/3. Here b2Egb(ϑ) is the sum

of the surface energy of one-dimensional defects in terms of

an atom (7).
For further analysis, it is necessary to estimate the

temperature at the grain boundary. The heating of the

metal during compression as well as the residual heating

is small because the SW in our case is weak, on the order

of 1−10GPa. The estimate obtained by Zeldovich in [24]
for SW heating at 25GPa for aluminum gives the heating

value relative to room temperature at 1T = 331K, and for

isentropic discharge, the residual heating is 1T = 134K.

Estimates for titanium in the case of SW of p = 10GPa

can be obtained from the equation

p = K(1− x) + pT0

(

1

x

)Ŵ0+1

,

x =
V
V0

= 0.909, pT0=
Ŵ0cV T0

V0

=0.77GPa, K =100GPa.

(8)

8∗ Technical Physics, 2024, Vol. 69, No. 8



1236 A.G. Sukharev, R.V. Smirnov, M.D. Taran, A.K. Kutukov

The heating by SW in titanium is equal to 1T = 33K;

it is related to taking into account the pressure of thermal

vibrations of lattice atoms. The residual heating for isen-

tropic unloading, excluding plastic deformations, is equal to

1T = 0.02K.

The deviator of the stress tensor results in plastic

deformations inside and along grain boundaries at pressures

above the threshold. Fast loads cause the creation of

dislocations and their movement along the grain. A potential

barrier at the grain boundary results in a release of the

kinetic energy of dislocations near the grain surface. Also,

a certain number of dislocations when reaching the grain

boundaries annihilate with dislocations that came to the

boundaries from the other side of the adjacent grain. This

energy is the source of heat. Also, the heat source is the

friction of the grains with each other. As shown above, the

heating of the metal due to spherical compressive stresses is

small, while the heating of the grain surface due to plastic

deformations will be more significant.

In the case of a flat SW, the spherical part of the stress

tensor is equal to 2/3 of the pressure amplitude, and

the third part falls on the deviator part of the stresses,

which is responsible for shear deformations and plastic

deformations. The rate of plastic deformations is of the

order ε̇0 = 107 s−1 under the impact of SW. The antiphase

wave dampens the pressure wave after 3µ s after reflection

from the back wall of the sample. ε̇01t = 0.3 is much

larger than the elastic strain — 6GPa/K = 0.06. The

estimate of the energy accumulated in a grain of 100 µm

(V = 10−6 cm3) is E = (3GPa · 10−12 m3) · 0.3 = 10−3J.

This energy reserve leads to heating by E/(cVV ) = 420K.

The specific (volume) heat capacity of titanium of

cV = 2.36 J/(cm3·K) and the grain volume are taken into

account here.

If the dislocation density is ρ = 1011/cm2, then a grain

with a diameter of D = 100 µm will store energy of

the order 2.2 eV·1011+4 · 10−12/b = 1.4 · 10−6 J. Heating

due to plastic deformations occurs from the grain energy

boundary. Dislocation energy is brought here and heat

is released during grain-boundary friction (and viscous

friction against dislocation motion gives a relatively small

volume heat capacity per grain): W = αbD2ρυ2 = 0.1W,

α = 10−5 Pa·s, υ = 103 m/s. The temperature along a grain

of 100 microns (µm) practically equalizes (Fig. 2, 3) after

a time on the order of 100 µs, the temperature at the

grain boundary will be about 700K. The estimation of

the heating of the grain shell, given in Sec. 1, based

on data on induced residual stresses and the coefficient

of thermal expansion of titanium. The heating reaches

1T = 400K from the initial room temperature according

to the estimation.

We do not take into account the contribution of vacancies

to the total entropy here. This choice is due to the fact

that the number of vacancies is determined by the ratio

of the vacancy birth energy to temperature. In turn,

the intense generation of dislocations is caused by rapid

deformation at the SW front. A whole group of atoms

should be shifted to permit the formation of a dislocation,

so the number of dislocations depends not so much on

temperature as on the shape and size of grains and the rate

of plastic deformation. The energy stored in dislocations

in terms of one atomic plane is of the order of 2.2 eV.

This energy is stored in the stresses of the crystal lattice,

i.e., in disturbances of the lattice order of the structure,

not only locally in the core of the dislocation, but also

distributed over space. The energy dependence has a

logarithmic singularity cut off by the distance to neighboring

dislocations. This type of non-local order disturbance is

weakly sensitive to temperature variations, but it is sensitive

to the density of such one-dimensional defects. Since the

dislocation density determines the curvature of the surface

at the boundary, the modification of the free energy along

the grain boundary is tied to a new order parameter —
the angle of curvature ϑ . The variation of the free energy

of the grain boundary at a constant temperature as a

function of the surface curvature determines the entropy

value in the Gibbs free energy −1G
T =

−U(T)+s(T)T+Egb(ϑ)
T in

terms of one atom of the surface. Let the grain diameter

be a . On its surface with the lattice step b equal to the

Burgers vector will be of the order of n = a2/b2 atoms.

A change of the number of atoms by one unit causes a

change of size by da = b2

2a . The characteristic time and

probability of activation of the process is determined by

the Debye frequency υD = 7.9 · 10+12 s−1 and the activation

energy 1G in accordance with the logic of papers [25,26].

The value Dgb
s = b2υD exp(−1G/T ) is associated with

the self-diffusion coefficient over grain boundaries. The

pre-exponential multiplier is defined with an accuracy of

a constant of the order of one. Since there are two

flows: to and from the grain, and the difference in flows

is attributable to the difference in entropy between the

actual grain size a and the effective size calculated from

the dislocation density ad(t) = 1
bρ(t) , the dynamics of the

grain size will be determined by an equation of the form

(ϑ = b/d = d/a =
√

b/a):

ȧ = −b2υD

a

{

exp

(

−U0

kT
+

E0b2

kT

√

b
ad

ln

√

adc
b

)

− exp

(

−U0

kT
+

E0b2

kT

√

b
a
ln

√

ac
b

)

}

. (9)

Here U0 = U − sT , and the constant A from (7) is

redefined as A = ln
√

c ; also, it should be noted that

ϑ = b/d = d/a =
√

b/a . Let us introduce the self-diffusion

coefficient D0 = b2υD exp(−U0/kT ) and the dimensionless

modulation constant ε = E0b2/kT . Then

ȧ =−D0

a

{

exp

(

ε

√

b
ad

ln

√

adc
b

)

−exp

(

ε

√

b
a
ln

√

ac
b

)}

.

(10)
The form of the equation (10) is quite similar to the

equation of coalescence kinetics [27]. We neglect dislocation

losses at the boundary here for simplification.
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0 0.010 0.020 0.030 0.040

mm

B: Transient thermal
temperature
Type: temperature
Unit: °C
Time: 1.e – 0.005 s
20.09.2023 17.47

1024.1 max
912.77
801.42
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467.38
356.04
244.69
133.35
22 min

Figure 2. Grain heating by heat flow from plastic deformations after 10 µs.
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B: Transient thermal
temperature
Type: temperature
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Time: 1.e – 0.004 s
20.09.2023 17.08

574.08 max
555.48
536.89
518.29
499.70
481.10
462.50
443.91
425.31
406.72 min

Figure 3. Grain heating by heat flow from plastic deformations after 100 µs.

3. Grain size distribution function

The theory presented here is based on the paper [27,28].

Considering υ(a) = da
dt as the speed of grain movement in

the dimensional space, it is possible to introduce the grain

size distribution function f (t, a), normalized to the number

of particles in unit volume

N(t) =

∞
∫

0

da f (t, a). (11)

The distribution function is given by the continuity equation

in this space:

∂ f
∂t

+
∂

∂a
( f υ) = 0. (12)

Finally, we note the law of complete conservation of matter,

which is expressed by the integral

Q =
4π

3

∞
∫

0

a3 f (t, a)da . (13)

Let us introduce a dimensionless quantity through the

ratio of a certain characteristic size associated with the

dynamics of grain size

x(t) =
ak(t)
ak(0)

. (14)

Let us assume that in the characteristic size decreases in

time, so that and the value of

τ = −3 ln x(t) (15)
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monotonically increases and can be considered as a new

time variable. Let us introduce the following variable as a

new dimensionless function for the grain size

u =
a

ak(t)
. (16)

The continuity equation follows from the relation

ϕ(τ , u)du = f (t, a)da in new variables, so that

∂ϕ

∂τ
+

∂

∂u
(υϕ) = 0. (17)

And the speed expression in the new variables has the form

υ(u) =
du
dτ

= − x
3ẋ

du
dt

= −
1[exp( ε̂√

xu
ln
√

xuĉ) − exp( ε̂√
z ln

√
z ĉ)] − u2

3u
,

(18)
where the following notation for dimensionless quantities is

introduced:

z =
ad

ak(0)
, 1 =

D0

xẋa2
k(0)

,

ε̂ = ε

√

b
ak(0)

, ĉ = c
ak(0)

b
. (19)

The main feature of the case under consideration is

that the velocity function has two roots in the domain of

definition, and they do not constitute a single multiple root,

as in the theory of [27]. In the case of a multiple root,

the velocity in the entire domain of definition preserves the

sign, and the neighborhood of the multiple root sets the

rapid decline of the distribution function when approaching

a singular point on the left in the form exp(−1/(u0 − u)).
It can be shown in the case of separate roots that one

of the first-order poles is integrable in the vicinity of the

point where the velocity vanishes. This is the basis of

the theoretical construction developed here. The appendix

shows how to obtain a general solution of the equation (17)
in terms of the integral (A4). The evolution of the solution

over time is given in the general form (A7) from application.

ϕ(τ , u) =
χ̂0(τ − g(u))

|υ(u)| (20)

Since a3 = u3x3ā3(0) = u3e−τ ā3(0), the function χ̂0 is

found from the condition (13) so that the integral over the

total amount of matter is preserved. So this is the exponent:

ϕ(τ , u) =
exp(τ − g(u))

|υ(u)| . (21)

Let us consider as an example the velocity function as a

square polynomial υ(u) = −(u − a)(b − u), b > a . The

function g(u) from (A4) is equal to

g(u) = − 1

b − a
ln

∣

∣

∣

∣

b
a

u − a
b − u

∣

∣

∣

∣

, exp(−g(u)) =

∣

∣

∣

∣

b
a

u − a
b − u

∣

∣

∣

∣

1
b−a

.

(22)

Therefore, the distribution function (21) in the vicinity of

the point a has an integrable singularity, since the degree

of the bracket (u − a)p in the denominator is less than

one. The point a is an attractor. Another pole is at the

point b and this is a singularity. The scope of the definition

cannot include it due to divergence. A characteristic that

originates from the boundary of the definition area on the

side of bmoves away from it with time. The time τ

starts at zero in physics. The coordinate u belongs to

the dimension space, so the domain of its definition is one

continuous set, including the point of attraction.

The results of calculations are shown in Fig. 4, 5. We

monitor the position of the roots of the function on the

right side of the formula(18) using the parameter (19) when

solving the time problem. The equality ū = 1 is preserved

by controlling the position of the right root. Characteristic

time required to change the grain size, order of magnitude

103 s.

Qualitative confirmation of the results obtained can be

found in a number of papers [29–31]. A coarse-grained

0 100 200 300 400 600

x
(t
)

0.70

0.75

0.80

0.90
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1000900500 700 800
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U – sT = 0.72 eV
U – sT = 0.65 eV

Figure 4. Change in the characteristic grain size for two diffusion

activation thresholds.
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Figure 5. Distribution function in the dimension space ϕ(u),
where u - - - normalized size, according to (16), for the case when

U − sT = 0.72 eV and when t = 800 s.
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TC17 titanium alloy (Ti-Al-Mo-Cr-Sn-Zr-Fe system) was

treated in Ref. [29] under a millimeter layer of water

with 15 ns laser pulses with a radiation power density

of F = 9.5GW/cm2. The size of initial grains (43µm)
was significantly reduced to a submicron size (400 nm) in

the near-surface layer of material up to 200 µm thick. It

was found in Ref. [30] that the thickness of the reinforced

layer (when measured on a cross-section) reaches 1mm

after treatment with high-power nanosecond laser pulses

(15 J per pulse) of Ti-6Al-4V alloy under a thin layer

of water (F = 5GW/cm2). Similar size reduction effects

are observed for nanometer-sized [31] grains. The initial

state of the material studied in this paper is characterized

by a submicrocrystalline (SMC) grain structure with an

average size of structural elements of 150 nm, and a thin

(thickness of the order of 1µm) subsurface layer with

the initial SMC structure with significantly reduced size

to the nanostructured state with the size of the structure

elements 75 nm is clearly distinguished after laser treatment

of titanium.

Conclusion

The definition of dislocation entropy introduced above

corresponds to the classical s = k ln1Ŵ, where 1Ŵ is the

number of states of the system, and the multiplier k
corresponds to the energy capacity of the characteristic

state. For instance, in the case of s(T ), it is necessary

to make the temperature dimensionless dividing it by a

given reference T/T0, then the Boltzmann constant in this

temperature scale turns into a constant associated with the

energy of the lattice atoms with the reference temperature,

k → kT0. In the case of dislocations, the parameter ϑ is

already dimensionless, so the multiplier before the logarithm

initially has the energy dimension and is equal to E0b2. The

density of states depends on the average distance between

dislocations. Since the distance between dislocations is

bounded from below by the Burgers vector, the entropy

at minimal distances vanishes. Since the dislocation density

in the grain increases from the middle to the boundary,

1Ŵ also changes. Therefore, the movement of dislocations

to the grain boundary will be accompanied by the release

of thermal energy. If the total energy stored in the

dislocation is below the Peierls−Nabarro potential, then

there is no translational motion of dislocations, the localized

state is transformed into infinite if it is above the Peierls-

Nabarro potential. The statistical weight of the state of

the system 1Ŵ grows near the separatrix according to the

Bohr−Sommerfeld rule due to the reduction of the distance

between levels in the space of energies. This results in

a sharp increase of the entropy near the separatrix. The

problem of dislocation entropy as a function of stored

energy is solved by calculating the statistical sum of the

subsystem state. This is a complex issue that we are

putting into a separate study. We plan to study kinetic

modeling with these factors in mind in the very near future.

In the present paper, we assume that the grain boundary

effectively inhibits the flow of dislocations, converting part

of the stored energy and entropy into heat. This energy

reserve affects the rate of diffusion along grain boundaries

in a polycrystalline metal, and a change in the initial

density of dislocations at the grain boundary leads to the

dynamics of the latter in dimensional space. There is

some relation between the grain size and the dislocation

density at the boundary in the quasi-equilibrium state. An

instantaneous increase of the dislocation density results in

a shift of the equilibrium towards grain grinding processes.

Characteristic times at which the average grain size in a

polycrystalline titanium alloy is transformed were obtained

in the paper using the Lifshitz−Slezov method based the

theory of phase transitions at the stage of coalescence in the

dimensional space, and the form of the distribution function

in dimensional space was obtained. The original restriction

on multiple roots is removed in the framework of the new

analytical construction.
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Appendix

Let us consider the continuity equation in the dimension

space (υ(u) = du
dτ ):

∂ϕ

∂τ
+

∂

∂u
(υϕ) = 0, (A1)

ϕ — size distribution function depending on time and

coordinate u = a
ak
. If we assume that the velocity υ changes

very smoothly over time, then it is possible to proceed

to the function χ = υϕ, whose equation in the adiabatic

approximation will be:

∂χ

∂τ
+ υ

∂χ

∂u
= 0. (A2)

Some features of this equation can be obtained by using the

Laplace transform [32]. Let’s denote the image of the func-

tion χ(τ ) by the function X (p). It follows from the theory

of the Laplace transform that χ(τ − ς ) → e−pς X(p). The

equation for images has the form

pX + υ
∂X
∂u

= χ0(u). (A3)

Index zero corresponds to the zero point in time. Let us

study the problem on the semi-axis of time [0,∞). Let us
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introduce the function

g(u) =

u
∫

0

dx
υ(x)

. (A4)

A homogeneous equation has a solution of the form

X(p, u) = Ce−pg(u). (A5)

Variation of the constant allows finding a complete solution

of the equation by substituting

C(u) =

u
∫

0

dγ
χ0(γ)

υ(γ)
epg(γ). (A6)

An inhomogeneous equation is defined by the value of the

function at the initial time

χ(τ , u) =

u
∫

0

dγ
υ(γ)

χ0(γ)δ(τ + g(γ) − g(u)) = χ̂0(g(u) − τ )

χ0(γ) = χ̂0(g(γ)). (A7)
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