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We obtain solutions for Eliashberg equations within the Nambu representation for a two-band model of iron-

based superconductors with nonmagnetic impurities. Two cases of a transition between s± and s++ states are

considered: (i) the transition is accompanied by the abrupt change of the order parameter sign within one of the

bands and (ii) the change is smooth. For both cases, we studied the role of a gauge defined by the coefficients

preceding the Pauli matrices τ̂1 and τ̂2 in a self-energy expansion, which correspond to the components of the order

parameter. We show that the absolute value of the order parameter is conserved for solutions in the clean and in

the Born limits. In an intermediate case, between the Born and unitary limits, result depends on the solution for

the clean limit. We show that a common gauge for the Eliashberg equations in which one of the order parameter

components vanishes is essential for adequate description of the multiband superconducting systems.
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1. Introduction

The superconducting state, which is a fundamental

quantum state in condensed media, has been first charac-

terized qualitatively at the microscopic level within the

Bardeen–Cooper–Schrieffer (BCS) theory [1]. However,

theoretical breakthroughs in quantitative characterization of

various aspects of this phenomenon are associated with

the development of quantum field theory methods [2] and
the formulation of Eliashberg equations [3]. The Eliash-

berg theory provides an opportunity to analyze dynamic

interaction, which is a step forward compared to the BCS

theory where the interaction potential is static. The single-

band approximation has long been considered completely

applicable to many of the studied systems. Iron compounds

(pnictides and chalcogenides) with a multisheeted Fermi

surface are a typical counterexample. Certain solutions

with different signs of the superconducting order parameter

corresponding to different sheets are obtained in the spin-

fluctuation mechanism of superconductivity sustained by

Coulomb repulsion. If the order parameter does not change

its sign within a single sheet, the state is denoted as s± [4].
If the order parameter has the same sign on all sheets of the

Fermi surface, the state is s++. An additional complication

arises if impurity scattering is taken into account. Owing to

the presence of several bands, intra- and interband types of

this scattering may be distinguished [5,6]. The description

of states s± and s++ requires at least two bands, which

is the basis of minimal models [7]. At the same time, it

was demonstrated that the presence of impurities may lead

to a transition between states s± and s++ in a two-band

model [8,9]. Depending on the magnitude of generalized

scattering cross section σ , this transition may be abrupt or

proceed smoothly through a gapless state with the order

parameter in one of the bands becoming zero before the

sign change [14]. This gapless state may manifest itself, e. g.,

in variation of penetration depth of the magnetic field with

an increase in the density of impurities or defects [10].
The standard approach to the Eliashberg theory is as

follows. In the Nambu representation [11], the self-energy

matrix specifying the Eliashberg equations is written as an

expansion in Pauli matrices τ̂ j , where j = 0, . . . , 3 and

index
”
0“ corresponds to unit matrix

6̂(k, iωn) = iωn[1− Z(k, iωn)]τ̂0 + χ(k, iωn)τ̂3

+ φ1(k, iωn)τ̂1 + φ2(k, iωn)τ̂2, (1)

where iωn = (2n + 1)iπT are the Matsubara frequencies;

n is an integer number; and Z, χ, φ1, and φ2 are arbitrary

real independent functions for which the system of Eliash-

berg equations is solved. Functions Z and χ are associated

with renormalization of Matsubara frequencies iωn and

single-electron excitations of quasiparticles, respectively, due

to the dynamic pairing interaction and effects related to

the presence of impurities in the system. Functions φ1

and φ2 define the superconductor order parameter and

superconducting gap

11,2(k, iωn) = φ1,2(k, iωn)/Z(k, iωn). (2)

If φ1 = φ2 = 0, a system is in its normal (non-supercon-
ducting) state. If φ1 6= 0, φ2 6= 0, or both functions assume

non-zero values, the obtained solutions correspond to the

superconducting state. Non-zero solutions for φ1 and φ2
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have the following property: there are an infinite number of

solutions for the pair of functions φ1 and φ2 differing by an

arbitrary phase factor exp(i2θ). Each of these pairs satisfies

relation φ2
1 + φ2

2 = const [11,12]. In practice, a gauge is

chosen such that the coefficient preceding matrix τ̂1 (i. e.,
ϕ1) or τ̂2 (i. e., ϕ2) is zero. This reduces the number of

equations in the system and simplifies calculations. This

gauge is valid for single-band superconductors (classical
and unconventional) and multiband superconductors with

electron–phonon interaction [11,12]. However, it is far from
obvious whether it remains valid in the case when the

structure of the superconducting order parameter changes

in a multiband system with a gapless state established in

one of the bands.

In the present study, the solutions of the system of

Eliashberg equations with both coefficients preceding Pauli

matrices in self-energy expansion (1) taken into account are

examined within the two-band model of iron-based super-

conductors with nonmagnetic impurities. It is demonstrated

that the absolute value of the order parameter is conserved,

φ2
1αn + φ2

2αn = const, for solutions in the Born limit where

the order parameter changes sign abruptly in transition

s± → s++. In the case of an intermediate scattering strength

with the order parameter sign change being smooth, the

result depends on the gauge of the initial solution for the

clean limit. The standard gauge for the Eliashberg equations

with one of the functions (φ1an or φ2an) being zero is not

only acceptable as a means to reduce computational costs,

but also necessary for stability and convergence of solutions.

2. Model and method

In the present study, we use the approach of ζ -integrated

Green’s functions within the two-band model of iron-based

superconductors [7]. A Green’s function is a matrix in band

and Nambu spaces:

ĝ(iωn) = ĝα(iωn) ⊗ 1αβ , (3)

where

ĝα(iωn) = −πNα(iω̃αnτ̂0 + φ1αnτ̂1 + φ2αnτ̂2)/Qαn, (4)

Qαn =
√

ω̃2
αn + φ2

1αn + φ2
2αn, iω̃αn ≡ iωnZα(iωn), φ1(2)αn ≡

≡ φα
1(2)(iωn), Nα is the density of quasiparticle states at

the Fermi level in a normal metal in the band with index

α = (a, b) and 1αβ is a unit matrix in the band space.

The self-energy in this approach is also a matrix of

the same dimension as the Green’s function. It is also

diagonal in band indices (in the general case, this is not

true, but non-diagonal contributions may be neglected in

the present analysis) and contains two contributions from

superconducting interaction and from nonmagnetic impurity

scattering

6̂(iωn) = 6̂
SC

(iωn) + 6̂
imp

(iωn). (5)

It is convenient to present self-energy expansion (1) in Pauli

matrices in the following form:

6̂
SC(imp)
α (iωn) =

2
∑

j=0

6
SC(imp)
jα (iωn)τ̂ j . (6)

We assume that the contribution from superconducting

interaction is produced primarily by the exchange of spin

fluctuations and is repulsive in nature, but may also

contain an additional attractive electron–phonon part. All

these contributions are introduced into the self-energy via

interaction functions λ
φ
αβ(n − n′) and λZ

αβ(n − n′):

6SC
0α (iωn) = −iπT

∑

ω′

n,β

λZ
αβ(n − n′)ω̃βn′/Qβn′ , (7)

6SC
1(2)α(ωn) = −πT

∑

ω′

n,β

λ
φ
αβ(n − n′)φ1(2)βn′/Qβn′ , (8)

where

λ
φ,Z
αβ (n − n′) = 2λ

φ,Z
αβ

∞
∫

0

d�
�B(�)

(ωn − ωn′)2 + �2
, (9)

is determined through coupling constants λ
φ,Z
αβ and norma-

lized bosonic spectral function B(�), which characterizes

the spectrum of spin excitations in the system [7]. The

values of λ
φ
αβ specified by the contributions of Coulomb

repulsion, spin fluctuations, and electron–phonon interaction

may be either positive (attraction) or negative (repulsion),
while the values of λZ

αβ are always positive. For simplicity,

λZ
αβ = |λφαβ | ≡ |λαβ | is often assumed.

The contribution of impurities is taken into account in

the T -matrix approximation [7,13,14], which yields the

following expressions:

6
imp
0a = −iŴa

[

σ (1− η2)2ω̃an/Qan

+ (1− σ )
(

η2Na ω̃an/(NbQan) + ω̃bn/Qbn
)]

/(2Dimp),
(10)

6
imp

1(2)a = Ŵa
[

σ (1 − η2)2φ1(2)an/Qan

+ (1− σ )
(

η2Naφ1(2)an/(NbQan) + φ1(2)bn/Qbn
)]

/(2Dimp),
(11)

where Ŵa is the intensity of impurity scattering, which is

proportional to impurity density nimp and effective scattering

cross section σ :

Ŵa = 2nimpσ/(πNa ), (12)

σ = π2u2Na Nb/(1 + π2u2Na Nb), (13)

and the value of η = ν/u specifies the ratio between intra-

band (ν) and inter-band (u) components of the scattering

potential of impurities,

Dimp = (1− σ )2 + σ 2(1− η2)2 + σ (1 − σ )κimp, (14)
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κimp = η2(N2
a + N2

b)/(Na Nb) + 2(ω̃anω̃bn

+ φ1anφ1bn + φ2anφ2bn)/(QanQbn). (15)

Having inserted expressions (7), (8), (10), and (11) into

formulae (6) and (5) and equated the resulting right-

hand side of expression (5) to the right-hand side of

expansion (1), we obtain the system of Eliashberg equations:

ω̃an = ωn + πT
∑

ω′

n,β

λZ
aβ(n − n′)ω̃βn′/Qβn′

+ Ŵa
[

σ (1− η2)2ω̃an/Qan

+ (1− σ )
(

η2Na ω̃an/(NbQan) + ω̃bn/Qbn
)]

/(2Dimp), (16)

φ1a = πT
∑

ω′

n,β

λ
φ
aβ(n − n′)φ1βn′/Qβn′

+ Ŵa

[

σ (1− η2)2φ1an/Qan

+ (1−σ )
(

η2Naφ1an/(NbQan)+φ1bn/Qbn

)]

/(2Dimp), (17)

φ2a = πT
∑

ω′

n,β

λ
φ
aβ(n − n′)φ2βn′/Qβn′

+ Ŵa

[

σ (1 − η2)2φ2an/Qan

+ (1−σ )
(

η2Naφ2an/(NbQan)+φ2bn/Qbn

)]

/(2Dimp). (18)

One half of the set of Eliashberg equations for one band a
is presented here; the equations for band b are obtained by

paired substitution of band indices in these equations.

At first glance, Eqs. (17) and (18) are identical and should

yield the same set of solutions. However, both equations

include not only components
”
1“ and

”
2“ of the order

parameter for one band, but also the order parameter for

the second band via Qαn denominators. Since the order

parameter in one of the bands goes through zero and

changes its sign in the transition between states s± and

s++ induced by nonmagnetic impurities, it is important to

determine what kind of gauge is applicable to the family of

solutions of such a system of Eliashberg equations.

3. Results and discussion

In the clean limit, the values of coupling constants

(λaa , λab, λba , λbb) = (3.0,−0.2, −0.1, 0.5) used for calcu-

lations yield a superconducting state with the s± structure

of the order parameter and a positive band-averaged

coupling constant

〈λ〉 = [Na(λaa + λab) + Nb(λba + λbb)]/(Na + Nb).

The critical temperature in the clean limit is Tc0 = 41.4K.

Since it was demonstrated earlier [14] that the presence of

an intraband component in the impurity scattering potential

does not affect qualitatively the phenomena under consider-

ation, we assumed for simplicity that impurity scattering
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Figure 1. Plot of the dependence of the 1αn gap function for the

first Matsubara frequency (n = 0) on impurity scattering intensity

Ŵa for σ = 0 and σ = 0.5 at η = 0 and T = 0.03Tc0 .

is non-existent in the intraband channel, η = 0. The σ

parameter may assume values ranging from zero in the Born

limit for a weakly scattering impurity (πuNa(b) ≪ 1) to

unity in the unitary limit of a strong scattering impurity po-

tential (πuNa(b) ≫ 1). The unitary limit was not considered,

since it follows from Eqs. (16)−(18) [7] that the presence of

nonmagnetic impurities does not affect the superconducting

state in the unitary limit. Two cases differing in the nature

of transition between the s± and s++ states were chosen

for examination: Born limit σ = 0 and intermediate case

σ = 0.5. In the first case, the order parameter sign change

in one of the bands (band b) is abrupt; in the second case,

the sign change proceeds smoothly going through zero.

Figure 1 presents the variation of the order parameter in

both bands with impurity scattering intensity Ŵa for the

cases of σ = 0.0 and σ = 0.5. The influence of strength

of the impurity scattering potential, which is characterized

by cross section σ , and relation η between the intra-

and interband components of the impurity potential were

examined in more detail in [14]. It was demonstrated that

superconducting gaps change smoothly near the s± → s++

transition at all values of σ and η except for the case of

weak scattering with a small σ , where the smaller gap

changes abruptly at the transition point and varies smoothly

after that with an increase in Ŵ. The jump is evened out

around σ = 0.11, and the transition becomes smooth. As

the temperature grows, the abrupt behavior of the smaller

gap changes to the smooth one at T ∼ 0.1Tc . This is why

critical temperature Tc has no singularities associated with

the step-like nature of transition at small σ , remaining a

smooth function of impurity scattering intensity Ŵa .

For further analysis, we present the pair of functions φ1αn

and φ2αn as real and imaginary parts of complex function

φαn = φ1αn + iφ2αn, which is written as

φαn = |φαn| exp(i2θα) ≡ |φαn|[cos(2θα) + i sin(2θα)],
(19)
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Figure 2. Dependences of the modulus of the 1bn gap function

for the first Matsubara frequency (n = 0) on impurity scattering

intensity Ŵa . The Born limit, σ = 0. The phase indicated for

each plot corresponds to the phase of the solution in the clean

limit (Ŵa = 0). Capital letters denote the branches of plots before

the transition (s± state), while the branches after the transition

(s++ state) are denoted with lowercase letters. All plots (with the

exclusion of the one for the normal state) match perfectly.
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frequency (n = 0) plotted on complex plane 11b0, 12b0 . The Born

limit. Concentric circles indicate that the family of solutions

for the superconducting gap for each fixed value lies on the

12
1b0 + 12

2b0 = const circle. The outer circle corresponds to

solutions for a clean superconductor. The phase indicated for

each plot corresponds to the phase of the solution in the clean

limit (Ŵa = 0). Capital letters denote the branches of plots before

the transition (s± state), while the branches after the transition

(s++ state) are denoted with lowercase letters. Arrows indicate

the direction in which Ŵa increases.

where |φαn| =
√

φ2
1αn + φ2

2αn is the modulus and 2θα is the

phase of the superconducting order parameter in band a .
At each step in Ŵa , the results from the previous step

were taken as seed values of the renormalized Matsubara

frequencies and the order parameter (starting from the clean

limit) to solve the system of Eliashberg equations (16)−(18)
for a superconductor with impurities. This method allows

one to obtain a solution for the superconducting phase

without impurities with a fixed phase and modulus of the

order parameter and trace the evolution of the system with

successive introduction of impurities. The temperature was

set to T = 0.01Tc0 in calculations.

The calculation results for the Born limit are shown in

Figures 2 and 3. These figures present dependence |1b0(Ŵa)|
of the modulus of the complex superconducting gap

function for the first Matsubara frequency (n = 0) on the

impurity scattering intensity and the plot of function 1b0(Ŵa)
itself on the complex plane in coordinates (11b0, 12b0),
respectively. The complex gap function is tied to the

order parameter function by relation (2). These figures

demonstrate that the modulus of the gap function remains

unchanged at fixed Ŵa for all the presented families of

solutions of the Eliashberg equations, and its phase changes

by a fixed value of π only at the moment of the s± → s++

transition. Modulus |1b0(Ŵa)| does not reach zero at the

transition point (Figure 2), indicating that the gap changes

abruptly.

A slightly different pattern is observed in the intermediate

case with σ = 0.5 (Figures 4−7). The solutions in which

the phase in the clean limit is 2θb = mπ/4, where m is an

integer number, behave as those in the Born limit. The sole

difference is that the transition is smooth and the modulus

of the gap function reaches zero (Figure 4); the phase

changes by π only at |1b0| = 0 (Figure 5). However, with

just a small deviation from these symmetrical directions

in plane (11b0, 12b0), a region of poor convergence of the

system of equations emerges near the s± → s++ transition.

This is seen in Figs. 6 and 7 in the cases with order

parameter phases 2θb = −0.05π and 2θb = −0.55π for a

clean superconductor in the region between Ŵa = 0.8Tc0

and Ŵa = 2.1Tc0, where the value of |1b0| differs from the

one corresponding to symmetric directions. The values of

the 1b0 modulus for these asymmetric directions are plotted

in Figure 6 for clarity, since the procedure of numerical

solution of the system of equations entered an infinite loop

and stopped at the limit of iterations, leaving the condition

on the residual of the solution unfulfilled. However, it

is worth noting that the modulus of the gap function for

a fixed value of Ŵa remains unchanged in each case of

this kind. As for the phase of such a solution, it can be

seen from Figure 7 that it is unstable in this region of

poor convergence: the solution
”
wanders“ along complex

plane (11b0, 12b0) until a new stable family of solutions is

reached. The difference between the order parameter phases

for different bands remains fixed: |2θa − 2θb | = π in state

s± and |2θa − 2θb | = 0 in state s++.
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This behavior of solutions at σ = 0.5 outside of symmet-

ric directions is attributable to the fact that the phase of

the gap function (order parameter) in band b is undefined

at near-zero |1b0| values, and the system of Eliashberg

equations cannot converge to a stable solution. In the Born

limit, any direction on the (11b0, 12b0) plane yields a stable

solution, since the s± → s++ transition is abrupt for near-

zero values of σ and the 1b0 function does not have enough

time to reach such values at which its phase is undefined.

In the case of symmetric directions 2θb = 0± πm and

2θb = π/2± πm, the gap function is real (the equations are

solved either for the real or for the imaginary part of 1bn

only), and its phase is actually defined at any value of Ŵa .

A similar pattern is seen in the 2θb = π/4± πm direction,

where Eqs. (17) and (18) match (except for sign), and their

solutions also turn out to be stable.

4. Conclusion

The solutions of Eliashberg equations in the Nambu

representation for a two-band model of iron-based su-

perconductors with nonmagnetic impurities were studied

numerically. The behavior of solutions in the presence

of a transition between the s± and s++ states with the

coefficients preceding Pauli matrices τ̂1 and τ̂2 in the self-

energy expansion being non-zero in the original system was

examined. The modulus of the order parameter is preserved

in the solutions for a clean superconductor; i. e., the family

of solutions satisfies condition φ2
1αn + φ2

2αn = const. This

is also true in the case of introduction of nonmagnetic

impurities into the system in Born limit σ = 0, where

the order parameter changes sign abruptly during the

transition. Far from the Born limit (σ = 0.5, where the

order parameter changes smoothly), when impurities are

introduced systematically into the system, the result depends

on the solution obtained in the clean limit. Specifically, if

the solutions of Eliashberg equations for a superconductor

without impurities satisfy gauges φ1αn 6= 0 and φ2αn = 0,

φ1αn = 0 and φ2αn 6= 0 or φ1αn = φ2αn 6= 0, the modulus

of the order parameter also remains unchanged at each

step in Ŵa . In all the other families of solutions in the

clean limit, a region of poor convergence of solutions of the

equations emerges when impurities are introduced into the

system, and it is impossible to tell for certain how the order

parameter behaves in such cases. It follows from the above

that the standard gauge for the Eliashberg equations, where

one of the functions φ1αn or φ2αn is identically equal to zero,

is not only acceptable as a means to reduce computational

costs, but also necessary for stability and convergence of

solutions for a superconductor undergoing a transition with

a change of sign of the order parameter.
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