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1. Introduction

In recent years, the observation of negative capacitance

in measurements has ceased to be perceived as a paradox

and has been discussed extensively in literature [1–8]. It is
important to note here that modern setups for measurement

of dielectric spectra at relatively low frequencies up to

30MHz measure the signal amplitude and phase (i. e.,
impedance in complex form), which are then used to

calculate (in software) the key dielectric parameters that

the device outputs. With a positive signal phase, the

capacitance is negative in this measurement design. The

simplest physical interpretation of negative capacitance is

that polarization is in antiphase with controlling electric

field E [2]. The presence of negative capacitance implies

the existence of negative permittivity. In physical terms,

this phenomenon signifies the presence of resonance pro-

cesses in the dielectric response [1]. While the author

of [1–3] associates the resonance processes in the dielectric

response, which were discussed in detail in these studies,

with elastic ionic polarization at optical frequencies, the

processes leading to negative capacitance due to a time

delay in current flow are attributed in [4,5] to the capture

of carriers by traps of various nature and to the presence

of a conduction mechanism similar to the Schottky barrier.

These processes proceed at frequencies significantly lower

than the optical ones, since charges localized at various

defects act as
”
oscillators“ in this case. Grain boundaries

are such defects in ceramics.

The fact that permittivity may be both positive and

negative in the dynamic regime (E = E(t)) with permittivity

dispersion has been noted by Yu.M. Poplavko [6 (p. 46)]
as early as in 1980. He considered the presence of

damped oscillators to be the cause of resonance effects

and introduced damping parameter Ŵ. A damped oscillator

induces a minimum in the frequency dependence of ε′,

which is a fundamental feature of resonance dispersion

and distinguishes it from dispersion characterized by the

empirical laws of Debye, Cole–Cole, Havriliak–Negami, etc.

Mathematical modeling of dielectric responses with account

for the damping parameter did indeed allow us to reproduce

a dielectric response with a minimum [7]. At the same time,

if only the damping effect is taken into account, the obtained

permittivity values exceed significantly the ones observed in

experiments. The results of mathematical modeling matched

experimental data only when both the relaxation conductiv-

ity and the damping effects were taken into account, which

made it possible to reproduce the experimental observation

of negative permittivity at frequencies significantly lower

than the optical ones.

The aim of the present study is to simulate dispersion

diagrams of complex permittivity and to compare them

with diagrams calculated based on experimental data.

Sodium niobate ceramics (NaNbO3, NN) was chosen as

the material for experiments. Its main components were
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prepared by individual synthesis at a temperature of 650◦C;

samples were sintered at 1100◦C in accordance with the

procedure detailed in [9,10]. The interest in this material

stems from the fact that synthetic NN has seven different

structural phases [11,12] and, consequently, a large number

of heterogeneous phase transitions within the 360−640◦C

temperature range. The composition used for the study

is specific in that, according to [10], its structural phase

transition at 360◦C is ferroelectric. The changes in

dielectric dispersion diagrams in the course of this transition

and higher-temperature structural phase transitions may be

regarded as
”
model“ ones. Their analysis is relevant to

working out the details of modeling the contribution of

conductivity and other mechanisms to relaxation processes.

Samples of sodium niobate ceramics were synthesized and

studied using the equipment of the Shared Research Facility

at the Tver State University.

2. Theory

Mathematical analysis of dispersion dependences of

permittivity and conductivity in an alternating electric field

necessitates the use of complex quantities. In this treatment,

imaginary parts are not just mathematical abstractions and

have an actual physical meaning.

In the case of complex permittivity

ε∗(ω) = ε′(ω) − iε′′(ω), (1)

real part ε′(ω) denotes relative permittivity and imaginary

part ε′′(ω) = tg δ(ω) · ε′(ω) characterizes dielectric losses,

where tg δ(ω) is the dielectric loss tangent, ω = 2π f is the

cyclic frequency, and f is the electric field frequency. A fre-

quency dependence is required, since this representation is

meaningful only in the dynamic regime.

As for complex conductivity

σ ∗(ω) = σ ′(ω) + iσ ′′(ω), (2)

the real part is understood as σ = 1/ρ, where ρ is the

resistivity of a material. The imaginary part of conductivity

represents the capacitive contribution; i. e., σ ′′(ω) ∼ ωC,

where C is the sample capacitance. The real part of

complex conductivity is often (see, e. g., [3]) presented as

σ (ω) = σo + σ ′(ω), where σo is the static conductivity that,

according to [13], specifies the contribution of free electrons

to conductivity:

σo = εo
ω2

p

ωτ

. (3)

Here, ωp is the plasma frequency and ωτ is the collision

rate determined from the frequency at which the maximum

point of a semicircle plotted in coordinates σ ′′(σ ′) is

positioned.

The relation between complex conductivity and complex

permittivity [1,2,13] is written as

σ ∗(ω) = iε∗(ω)εoω = (ε′′(ω) + iε′(ω))εoω, (4)

where εo = 8.85 · 10−12 F/m is the dielectric constant.

Thus, the real part of complex conductivity is proportional

to the imaginary part of complex permittivity, and vice versa:

σ ′(ω) = εoωε
′′(ω), (4a)

σ ′′(ω) = εoωε
′(ω). (4b)

One of the key parameters in characterizing the behavior

of a dielectric in an external electric field is relaxation

time τ , which has been introduced by Debye [14] as the

time interval within which the polarization of a dielectric

decreases by a factor of e after switching off the external

field. Generally speaking, it characterizes the process of

spontaneous transition of a non-equilibrium macroscopic

system into a state of thermodynamic equilibrium. While

the dielectric response of ordered systems follows the

empirical Debye law, the relaxation time spectrum needs

to be taken into account in the case of disordered systems,

which include solid solutions. The empirical Cole–Cole
law [15] is often used to model this spectrum. It is assumed

in this case that a dielectric medium is characterized not

by a single fixed relaxation time, but by a spectrum of

relaxation times symmetrical with respect to the most

probable one (τ ). Inverse relaxation time 1/τ = ωτ

characterizes the rate of polarization settling within the

interval of field influence.

In the present study, we consider the dielectric response

within the (0.5−20MHz) frequency range; i. e., the low-

frequency (linear) dispersion region, which is analyzed

using other empirical techniques [1,7], is excluded. The

following may then be written for complex permittivity in

an alternating electric field:

ε∗(ω) − ε(∞) =

N
∑

n=1

εn(0) − εn(∞)

1 + (iωτn)1−λn
, (5)

where ε(∞) is the permittivity corresponding to infinite

frequency. The presence of N relaxation processes with

different relaxation times τn, where n = 1, 2, . . . , N, is

assumed. Thus, λn = 2ψ/π is the width of the relaxation

time spectrum of each process, ψ is the opening angle of the

diagram arc (Figure 1, a), and εn(0) and εn(∞) specify the

maximum and minimum permittivity for each process with

εn+1(0) = εn(∞) and ε(∞) = εN(∞) (Figure 1, b). When

the dielectric response follows the empirical Debye law

characterizing the contribution of an ordered subsystem to

the dielectric response, λ = 0. When the dielectric response

is governed by a disordered subsystem (which corresponds

to the empirical Cole–Cole law), λ 6= 0.

Dispersion of complex permittivity ε∗(ω), which is

commonly represented in the form of ε′′(ε′) dispersion

diagrams, is characterized by various parameters determined

from experimental data, which were discussed in detail in

our earlier study [7].
At the same time, it follows from the results of calcula-

tions (Figure 1) that even an idealized dielectric response

has smooth transitions between sections that correspond to

various relaxation processes. In experiments (Figure 2, a),
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Figure 1. Model calculation of the dielectric response according

to formula (5) with three different relaxation processes taken into

account: a) — dispersion diagrams; b) — frequency dependences

of the real (curve 1) and imaginary (curve 2) parts of complex

permittivity.

a partial
”
overlap“ of sections corresponding to various

relaxation processes is observed. In view of this, only

approximate values of parameters ε(0) and ε(∞) may be

derived from experimental dispersion diagrams.

Let us turn to theory. According to [6], dispersion

frequency ωo is the frequency at which the maximum ε′′(ω)
is observed (Figure 1). Its value [6, Figure 8.6] is

ε′′max(ω) =
ε(0) − ε(∞)

2
. (6)

It can be seen that this relation is preserved both in

the calculation model (Figure 1, b) and in the experiment

(Figure 2, b). Therefore, it may be used to determine the

ε(0) − ε(∞) parameter, which is applied in mathematical

modelling of the dielectric response, from experimental data.

3. Modeling

Equation (5) characterizes relaxation processes well and

allows one to determine the inverse relaxation time directly

from experimental data on the frequency corresponding to

the maximum dielectric losses in frequency dependence

ε′′(ω).
As we have already noted [7], calculation of the dielectric

response by formula (5) does not allow one to reproduce

the permittivity minimum (Figure 3, curve 2) observed in

experiments (Figure 3, curve 1) on the dielectric dispersion

of piezoceramic solid solutions. This implies that the

dielectric response of polycrystalline solid solutions cannot

be characterized using the theory of relaxation processes

only.

The essence of mathematical modeling in this case is to

determine which processes have a significant impact on the

dielectric response of a system.

Let us first consider resonance processes (Figure 4)
emerging in a medium with a damped oscillator. It is ne-

cessary to clarify the terminology here. Yu.M. Poplavko [6]
introduced relative quantity (parameter) Ŵ, which charac-

terizes damping. In the case strong damping (Ŵ → ∞),
the behavior of the system is governed by the relaxation

dispersion only. A.K. Jonscher used both a damping

coefficient [1] and a parameter characterizing inertial ef-

fects [2]. Notably, when the first coefficient increases,

the second one decreases (i. e., a strong enhancement of

damping translates into a complete lack of inertial effects,

which is the case of dispersion characterized by the Debye

equation). In the present study, we use the terminology and
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Figure 2. Dielectric response of sodium niobate ceramics

observed at 30◦C: a) — dispersion diagrams; b) — frequency

dependences of the real (curve 1) and imaginary (curve 2) parts

of complex permittivity.
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Figure 3. Frequency dependences of the real part of permittivity.

Experimental (curve 1) and calculated (curves 2−4) dependences
for

”
pure“ dielectric response (curve 2), response with account for

damping (curve 3), and response with account for the relaxation

conductivity (curve 4).

notation proposed by Yu.M. Poplavko. According to [6],
the contribution of resonance polarization to the dielectric

response is specified by damping parameter Ŵ; i. e., an

additional term is introduced into Eq. (5):

ε∗(ω) − ε(∞) =
ε(0) − ε(∞)

1−
(

ω
ωo

)2
+ iŴ ω

ωo

, (7)

where ωo is the resonance polarization frequency. This

frequency corresponds to the maximum of the frequency

dependence of the real part of complex conductivity

(Figure 4, b). In the case of resonance dispersion (Figu-
re 4, a), relation (6) is violated. However, in contrast

to the relaxation dispersion (Figure 2), the ε(0) − ε(∞)
contribution may be determined much more accurately

from experimental data in the case of resonance dispersion

(Figure 4, a), since the shape of the dispersion curve allows

one to establish the base line unambiguously.

According to [6, p. 242], the following relation holds true

in the case of weak damping:

ε′′max(ω) =
ε(0) − ε(∞)

Ŵ
. (8)

In practice, this relation is satisfied when the ε′′(ω)
dependence maximum is observed at the resonance po-

larization frequency (ωo). Thus, when calculating the

resonance dielectric response, one may use relation (8) to

determine damping parameter Ŵ from experimental data. It

is more convenient for calculations than the expression used

in [7], which requires the determination of both resonance

frequencies.

It should be noted that when the dielectric response is

calculated in the presence of resonance processes, the term

specified by formula (7) in sum (5) should be supplemented

by another term characterizing the most probable relaxation

time of the resonance process, which, according to [2,6],
is determined from circular diagrams. The procedure of

plotting them was detailed in our study [7].
With the damping effect taken into account (Figure 3,

curve 3), one may find a minimum of the ε′(ω) depen-

dence. However, severely overestimated permittivity values

are obtained in this case. Therefore, there is another

contribution to the dielectric response that
”
compensates“

for this increase.

Since Jonscher [3] notes that the presence of σ ∗(ω)
conductive currents may lead to the observation of negative

capacitance in an experiment, terms characterizing this

contribution were introduced into the dielectric dispersion

calculation to account for the contribution of complex

conductivity to the dielectric response. According to [1],
relaxation complex conductivity may be written as

σ ∗ = iωτσ σ∞
1− iωτσ
1 + (ωτσ )2

. (9)

Here, σ∞ is the conductivity at infinite frequency and

τσ = 1/ωo is the relaxation time of conductive current

(Figure 4, b).
While ε′′(ε′) dispersion diagrams have the form of a

circular arc in most dielectric materials, the σ ′′(σ ′) diagram
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Figure 4. Frequency dependences of the real (curve 1) and

imaginary (curve 2) parts of complex permittivity (a) and diagram

σ ′′(σ ′) (b) of sodium niobate ceramics in the high-temperature

phase (the frequency range is 0.5−15MHz).
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Figure 5. Frequency dependences of the real part of complex

conductivity of sodium niobate ceramics at the following tempera-

tures: curve 1 — 250◦C, 2 — 370◦C, 3 — 470◦C, 4 — 620◦C.

is a semicircle, which implies the existence of a single

relaxation time and simplifies the graphical determination

of parameter τσ .

Taking (4) and (9) into account, one may present

the relation between relaxation conductivity and complex
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Figure 6. Frequency dependences of the real and imaginary parts of complex permittivity of sodium niobate ceramics at temperatures of

250◦C (a), 370◦C (b), 470◦C (c), and 620◦C (d).

permittivity in the following form:

ε∗(ω) =
σ ∗(ω)

iεo(ω)
=

1

iεo(ω)
iωτσ σ∞

1− iωτσ
1 + (ωτσ )2

=
1

εo
τσσ∞

1− iωτσ
1 + (ωτσ )2

. (10)

Thus, the general equation for the dielectric response

with account for damping effects and the contribution of

relaxation complex conductivity takes the form

ε∗(ω) = ε(∞) +

N
∑

n=1

εn(0) − εn(∞)

1 + (iωτn)1−λn

+
ε(0) − ε(∞)

1−
(

ω
ωo

)2
+ iŴ ω

ωo

−
1

εo
τσ σ∞

1− iωτσ
1 + (ωτσ )2

.

(11)

When one determines the imaginary part of complex

permittivity, it should be taken into account that negative

dielectric losses contradict the fundamental laws of physics;

therefore, ε′′(ω) = |Im (ε∗(ω))|. The modulus sign is

applied separately to each contribution (term of Eq. (11))
to complex permittivity.
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With the contribution of conductivity to the dielectric

response taken into account, we obtain an almost complete

correspondence between the model calculation and the

experimental data (Figure 1, curve 4). Thus, the presence of

damped oscillators in a dielectric medium translates into a

combined influence of inertial processes and relaxation con-

ductivity, which is likely to be a consequence of inertia of

the damped oscillator and manifests itself in experiments as

a resonance dielectric response with a negative capacitance

value. It should be remembered that while oscillating atoms

or lattice ions
”
resonate“ at optical frequencies [1–3,6],

oscillations of charges localized at various defects in the

structure [4,5] (including grain boundaries in ceramics)
contribute to the dielectric response at lower frequencies.

The
”
inertia“ of the examined phenomenon is attributable

in this case to the fact that oscillations of such charges lag

behind the effect of an alternating electric field.

4. Analysis of the dispersion of complex
permittivity of sodium niobate
ceramics

As was demonstrated earlier [10], dispersion diagrams of

complex permittivity reveal the presence of both relaxation

and resonance dispersion in NN ceramic samples. In view

of this, it was not without interest to test the model approach

described above in application to the dielectric responses

of this material. Temperatures corresponding to different

structural phases of sodium niobate were chosen for analy-

sis, since, according to [10], the dispersion dependences in

different structural phases differ fundamentally.

Dielectric spectra were measured experimentally with a

phase-sensitive Vector-175 LCR meter under continuous

heating of the sample at a rate no greater than 1 degree

per minute. This rate made it possible to record spectra

in the range of 1Hz−30MHz within a time interval

that did not exceed the duration of sample heating by

one degree. Since measurements were carried out at

temperatures up to 600◦C, the accuracy of 1 degree is quite

high. Text files of frequency dependences recorded by

Vector-175 and containing complete data on complex resis-

tance, conductance, and capacitance provide an opportunity

to analyze the temperature and dispersion dependences of

dielectric characteristics (specifically, complex permittivity

and complex conductivity).

As was noted above, the frequency of the maximum in

the dependence of the real part of complex conductivity

needs to be determined in order to account for the contribu-

tion of resonance polarization to the dielectric response. It

should be noted that the maximum, which, according to [6],
specifies the frequency of resonance polarization, had the

same frequency of 10,19MHz at all temperatures, although

the real part of complex conductivity increases noticeably

with an increase in temperature in the low-frequency region

(Figure 5).

a

b

0

400

0 400
e'

200

e"
e"

200

1

–1000 0 1000 2000
0

1000

2000 4

3

2

e'

Figure 7. ε′′(ε′) diagrams of sodium niobate ceramics at tem-

peratures of 250◦C (curve 1), 370◦C (curve 2), 470◦C (curve 3),
and 620◦C (curve 4).

Figure 6 shows the experimental (dots) and calculated

by formula (11) (solid curves) frequency dependences of

the real and imaginary parts of complex permittivity. The

corresponding ε′′(ε′) diagrams are presented in Figure 7. It

is evident that the mathematical model deviates from the

experimental data only at frequencies above 5MHz within

the 200 kHz−20MHz frequency range at temperatures of

250 and 370◦C, which correspond, according to [11],
to structural Q and R phases. At higher temperatures

(corresponding to S and T phases), a discrepancy is also

seen at relatively low frequencies (up to 1 and 4MHz,

respectively).

The discrepancy between the results of mathematical

modeling and experiments in the frequency interval lo-

cated beyond the minimum of the real part of complex

permittivity is indicative of the presence of unaccounted

conduction processes. Additional studies are needed to

clarify the nature of these processes. An attempt to

take into account the contribution of free electrons to

conductivity with the use of formula (3) resulted in a

wide (several orders of magnitude) discrepancy between

the computational model and the experiment. This suggests

that these processes are not related to electronic conduc-

tivity.
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5. Conclusion

A comparative analysis of the dispersion diagrams of

complex permittivity within the 200 kHz−20MHz fre-

quency range revealed an almost complete correspondence

between the proposed mathematical model and experimen-

tal data. The introduction of a damped oscillator, which

is the source of resonance processes, into the model of

a ceramic material makes it possible to reproduce the

emergence of a minimum in the experimental frequency

dependence of real permittivity, which goes to negative val-

ues at high temperatures. In practice, the role of
”
oscillating

charges“ is apparently played by charges localized at defects

induced by the grain structure of ceramic samples.

It is worth pointing out that the region of linear dis-

persion, which is commonly associated with space-charge

(migration) polarization in the low-frequency region, was

neglected intentionally in the present study. The results

of mathematical modeling demonstrated that the region of

migration polarization is
”
low-frequency“ only in name.

Thus, the neglect of contributions of processes related to

migration polarization leads to a discrepancy between the

calculated and experimental dielectric responses of sodium

niobate ceramics that emerges already below 0.2MHz

at temperatures of the ferroelectric Q phase and the

R phase and, following the transition to high-temperature

structural S and T phases, below 1 and 5MHz, respec-

tively.
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