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Influence of dislocation density on the dynamic yield strength

of irradiated metals with giant magnetostriction
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Slip of an ensemble of edge dislocations in an irradiated ferromagnet with giant magnetostriction under high-

energy external impacts is analyzed within the theory of dynamic interaction of defects. An analytical expression

for the dependence of dynamic yield strength of an irradiated ferromagnet on dislocation density is obtained. This

dependence is non-monotonic and may feature a minimum and a maximum. The minimum forms in the transition

from dominant dynamic drag of dislocations by point defects to the dominance of drag by other dislocations (Taylor
hardening). The maximum is found at a density of dislocations under which their contribution to the formation of

a spectral gap exceeds the contribution of the magnetoelastic interaction with the magnetic subsystem.
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1. Introduction

Materials with giant magnetostriction are used widely

in, e. g., microelectromechanical systems [1,2]. At low

temperatures, Tb, Dy, Ho, Er, and iron garnets of these

metals (e. g., Tb3Fe5O12) feature giant magnetostriction.

Their magnetostriction is 2−3 orders of magnitude higher

than that of alloys and ferrites of the Fe group [3].

At room temperatures, ferrimagnetic compounds DyFe2,

TbFe2, HoFe2, and DyFe3 feature giant magnetostriction.

An alloy based on iron and cobalt [4] is also characterized

by giant magnetostriction.

Since the materials used in microsystems engineering

combine microelectronic and micromechanical elements, the

mechanical properties of such materials are crucial. When

materials of this kind are irradiated, the formation of a large

number of radiation-induced defects (vacancies, interstitial

atoms, dislocation loops), which have a significant effect

on their mechanical properties, is observed [5–7]. High

strain rate deformation of these materials is initiated under

high-energy impacts [8–13]. The shaping of mechanical

properties in such conditions has several specific features.

The contribution of dislocation loops to the dynamic

yield strength of irradiated metals and alloys with giant

magnetostriction under high strain rate deformation was

examined in [14]. The effect of giant magnetostriction

on the dependence of dynamic yield strength on impurity

concentration was analyzed in [15]. The dependence of

dynamic yield strength of irradiated materials on concen-

tration of point radiation-induced defects in a non-magnetic

crystal was studied in [16]. The present study is focused

on the dependence of dynamic yield strength of irradiated

ferromagnets with giant magnetostriction on dislocation

density under high strain rate deformation.

The evolution of a dislocation ensemble may be char-

acterized theoretically with the use of kinetic equations

for dislocation density [17–20]. This approach is fairly

efficient and provided an opportunity to interpret a vast

array of experimental data in the field of quasi-static

deformation. The theory of dynamic interaction od defects

(DID) developed in our earlier studies [21–26] turns out to
be useful in certain analyses of high strain rate deformation

(103−109 s−1).

2. Analysis of high strain rate
deformation within the DID theory

The DID theory is less general in nature than a system of

equations [17–20], but provides an adequate description of

the dissipation mechanism in rapid slip of dislocations and

collective dynamic effects. This theory explains qualitatively

a number of experimental dependences obtained in the

study of high strain rate deformation of metals and alloys.

Specifically, it provided a description of linear [27,28],
root [28,29], and N-shaped [24,28,30] dependences of this

limit on dopant concentration, the non-monotonic rate de-

pendence with a maximum [25,31], and the non-monotonic

dependence on dislocation density with a maximum [26,32]
and a minimum [21,33].
The DID theory is a modified version of the

Granato−Lücke theory. Each dislocation in an ensemble

is regarded as an elastic string with effective tension and

effective mass. These dislocations undergo over-barrier

slip in the elastic field of structural defects. The main

mechanism of dissipation is the excitation of dislocation
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oscillations as a result of interaction of a dislocation with

structural defects.

The efficiency of this dissipation mechanism depends

on the nature of the dislocation oscillation spectrum (in
particular, by the presence of a gap in it). The presence

of a gap implies that a dislocation oscillates in a potential

well moving through the crystal along with the dislocation.

Such a well may form as a result of interaction of a moving

dislocation with point defects and other dislocations in an

ensemble or of magnetoelastic interaction with the magnetic

subsystem of a crystal. The dislocation oscillation spectrum

with gap 1 takes the form

ω2(qz ) = c2q2
z + 12. (1)

According to the DID theory, the dynamic interaction of

point defects with a dislocation may assume, depending

on the dislocation slip rate [23], a collective nature or the

form of independent collisions. Let us denote the time

of interaction between a dislocation and an impurity atom

as τde f = R/ν , where R is the defect radius. The time

of perturbation propagation along the dislocation over a

distance on the order of the mean distance between defects

is denoted as τpr = l/c . In the region of independent

collisions ν > ν0 = R1de f , inequality τde f < τpr is fulfilled

(i. e., a dislocation element is not affected by other defects

during its interaction with a point defect). A gap does not

form in the dislocation oscillation spectrum in this region.

In the region of collective interaction (ν < ν0), the reverse

inequality is fulfilled: τde f > τpr ; i. e., when a dislocation

interacts with a point defect, this dislocation element
”
feels“

the influence of other defects that caused a dislocation shape

perturbation. A gap emerges in the dislocation oscillation

spectrum in this region. This gap is characterized by the

following expression [28]:

1 = 1d =
c
b

(ndχ
2)1/4. (2)

At a sufficiently high density of dislocations, it is their

collective interaction with each dislocation that produces

the main contribution to gap formation in the dislocation

spectrum. The dislocation density level needed for this is

ρ > ρ0, where

ρ0 =

√

ndχ2

b2
. (3)

Here, nd is the dimensionless concentration of atoms of

the second component and χ is the parameter of their

dimensional mismatch. The spectral gap is then given

by [21]

1 = 1dis = b

√

ρM
m

∼ c
√
ρ; M =

µ

2π(1 − γ)
, (4)

where γ is the Poisson’s ratio and µ is the shear modulus.

The primary contribution to the formation of a spectral

gap in crystals with giant magnetostriction may be produced

by the magnetoelastic interaction of a dislocation with the

magnetic subsystem of a crystal [14,15]. According to [14],
the following expression characterizes the contribution of

the magnetoelastic interaction to the formation of a gap in

the oscillation spectrum of a dislocation:

12
M =

B2
Mb2ωM

16πmc2
s

ln
θc

ε0
. (5)

Here, BM = λM0, M0 is the saturation magnetization, λ is

the magnetoelastic interaction constant, ωM = gM0, g is

a phenomenological constant equal in order of magnitude

to the gyromagnetic ratio of an electron, θc is the Curie

temperature, and ε0 and cs are parameters of the magnonic

spectrum.

A magnonic draging force induced by the magnetoelastic

interaction acts on a moving dislocation in a ferromagnetic

crystal. This force was analyzed in [34–36]. It was demon-

strated in [34] that the magnonic draging force is most

pronounced at temperature T < 100K. At this temperature,

this force exceeds the phonon drag. Gadolinium with Curie

temperature Tc = 29K is examined here as an example

of a ferromagnet with giant magnetostriction. This metal

retains magnetic ordering even at room temperature, when

the influence of magnonic drag may be neglected.

The force of dynamic drag of a dislocation by structural

defects is calculated in the second-order perturbation theory.

The transverse oscillations of a dislocation in the slip

plane are considered to be weak and are characterized by

function sx (z , t):

F = b

〈

∂σxy

∂X
Sx

〉

= b

〈

∂σxy

∂X
Gσxy

〉

, (6)

where G is the Green’s function of the dislocation motion

equation. The Fourier transform of this function takes the

form

G(ω, q) =
1

ω2 + iβω − c2q2
; β =

B
m
. (7)

Symbol 〈. . .〉 denotes averaging over a chaotic distribution

of defects and over the dislocation length

〈 f (r i )〉 =
1

L

∫

L

dz
∫

V

N
∏

i=1

f (r i )
dr i

V N
, (8)

where V is the volume of a crystal, N is the number of

defects in it, and L is the dislocation length. When averaging

is performed in accordance with the standard procedure,

number of defects N and crystal volume V tend to infinity,

while their ratio remains constant and equal to the mean

concentration of defects.

Within the DID theory, the contribution of various

structural defects to the dynamic yield strength may be

expressed as

τ =
nb

8π2m

∫

d3q|qx | · |σ d
xy(q)|2δ

(

q2
xν

2 − ω2(qz )
)

, (9)

where ω(qz ) is the spectrum of dislocation oscillations, n is

the volume concentration of structural defects, and σxy (q) is
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the Fourier transform of the corresponding component of

the stress tensor produced by a defect.

It was demonstrated in [37] that the contributions of va-

rious structural defects (in the present case, point defects τd

and dislocation loops τL) and Taylor hardening τT need to

be summed in order to calculate the crystal yield strength:

τ = τd + τL + τT . (10)

3. Formulation of the problem, solution,
analysis of results

Let us consider the over-barrier slip of infinite edge dis-

locations under the influence of constant external stress σ 0
xy

in planes parallel to XOZ at a constant rate in an irradiated

ferromagnetic crystal with magnetic anisotropy of the
”
easy

axis“ type (Figure 1). The easy axis is parallel to axis

OY , and magnetization and the magnetic field are aligned

with the positive direction of this axis. The crystal features

giant magnetostriction and contains point radiation-induced

defects and prismatic dislocation loops. The planes of these

loops are parallel to the slip plane of dislocations, and their

centers are distributed randomly. Let us assume that all

dislocation loops have radius R and identical Burgers vectors

b0 = (0, b0, 0) parallel to the OY axis.

The dislocation lines are parallel to axis OZ, and their

Burgers vectors are parallel to axis OX . The position of a

dislocation is given by

Sx(z , t) = sx (z , t) + νt. (11)

Here, function sx (z , t) characterizes dislocation oscillations

in the slip plane. When averaged over the random

distribution of structural defects and the dislocation length,

its value is zero.

The equation of dislocation motion takes the form

m

{

∂2Sx

∂t2
−c2 ∂

2Sx

∂z 2

}

=bx
[

σ 0
xy +σ p

xy +σ dis
xy +σ L

xy

]

−B
∂Sx

∂t
.

(12)
Here, m is the mass of a unit dislocation length, c is

the speed of sound in metal, b is the modulus of the

Burgers dislocation vector, σ
p

xy is the component of the

stress tensor produced on the line of a moving dislocation

by point radiation-induced defects, σ dis
xy is the component

of the stress tensor produced at the same spot by other

dislocations moving in their slip planes, σ L
xy characterizes

the stresses produced by prismatic dislocation loops, and

B is a constant characterizing phonon drag.

The primary dissipation mechanism is the irreversible

conversion of energy of external impacts into the energy

of transverse oscillations of a dislocation in the slip plane.

This mechanism was investigated theoretically in [38], where

over-barrier dislocation motion in the field of point defects

was analyzed. It was demonstrated in this study that

the amplitude of dislocation oscillations may be several

orders of magnitude higher than the amplitude of thermal

oscillations.

Z
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X
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b0

b0

b0
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Figure 1. Diagram of dislocation motion in an irradiated

ferromagnet

r, 10 m14 –2

0 5 10 15 20

1

2

0

3

t
, 
1
0

P
a

8

25

n
L4

n
L3

n
L2

n
L1

Figure 2. Dependences of the dynamic yield strength of an

irradiated ferromagnet with giant magnetostriction on dislocation

density corresponding to different values of dislocation loop

concentration (nL4 > nL3 > nL2 > nL1).

The contribution of point radiation-induced defects is

calculated using formula (9). The contributions of the

following interactions to gap formation are taken into

account in calculations: interactions of a dislocation with

point defects, other dislocations, and the magnetoelastic

system. The obtained result takes the form

τd =
K

ρ(ρ + ρd + ρM)
. (13)

Here,

K =
µndχ

2ε̇

b3c
; ρd =

χ
√

nd

b2
; ρM =

12
M

c2
. (14)

The force of dynamic dislocation drag by prismatic

dislocation loops was analyzed in detail in [22,39,40].
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When calculating the contribution of dislocation loops, we

limit ourselves to the rates at which the dynamic drag

of dislocations by these loops has the nature of Coulomb

friction (i. e., does not depend on the dislocation slip rate).
In the present study, this rate domain is specified by

inequality

ε̇ < ε̇cr = ρb2c
√
ρ + ρd + ρM . (15)

Let us obtain numerical estimates for gadolinium with

giant magnetostriction. According to the results of [14,15],
gadolinium has 1M = 0.5 · 1012 s−1. At b = 3.6 · 10−10m,

ρ = 1016 m−2, nc = 10−4, χ = 10−1, and c = 3 · 103 m/s,

the critical rate is ε̇cr = 108s−1.

Having performed the necessary calculations, we obtain

the following expression for the contribution of dislocation

loops:

τL =
D√

ρ + ρd + ρM
; D = µnLbR. (16)

Here, nL is the volume concentration of dislocation loops.

Term τT is proportional to the square root of dislocation

density

τT = αµb
√
ρ. (17)

Here, α is a dimensionless coefficient on the order of unity.

Inserting the obtained expressions into formula (10), we
find that the dependence of the dynamic yield strength of an

irradiated ferromagnet with giant magnetostriction is non-

monotonic and may have a minimum and maximum. The

obtained dependence is plotted in Figure 2.

This dependence has a maximum at dislocation density

values

ρmax =
B2

Mb2ωM

16πc2mc2
s
ln

θc

ε0
. (18)

The position of its minimum is given by

ρmin =

(

ndχ
2ε̇c

αb412
M

)2/3

. (19)

Both extrema may be observed at nL = 1023 m−3,

nd = 10−4, ε̇ = 107 s−1, and the dislocation density varying

from 1011m−2 to 1016 m−2. With these values, we obtain

ρmin = 1013−1014 m−2 and ρmax = 1015 m−2.

4. Conclusion

The obtained result verifies the conclusions of the DID

theory regarding the emergence of extrema: the minimum

yield strength is observed when the dominant contribution

to the overall drag of dislocations switches from one defect

type to another, and the maximum is found when the

dominant contribution to the formation of a spectral gap

changes.

In the present study, the minimum is manifested in

transition from the dominance of dynamic dislocation drag

by point defects to the dominance of drag by other

dislocations (Taylor hardening). The position of the

maximum corresponds to the transition from the dominant

contribution of magnetoelastic interaction to gap formation

to the dominance of collective interaction of dislocations.

A non-monotonic dependence of the dynamic yield

strength on dislocation density with a minimum and a

maximum may form during high strain rate deformation of

aged alloys [41]; however, in an irradiated ferromagnet, the

specific shape of this dependence, the positions of extrema,

and the domain of applicability of the obtained results are

all set by the magnetic characteristics of a crystal (primarily

the magnetostriction constant).
The presented results may help analyze the mechanical

properties of irradiated ferromagnetic crystals under high

strain rate deformation.
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