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This work proposes several approaches to simplify the theoretical modeling of large diameter nanotubes.

Literature analysis shows that most ab initio simulations of nanotubes choose small diameters to reduce

computational cost. However, we show that a small torsional deformation can lead to a significant reduction in the

number of atoms in the elementary cell of a chiral nanotube. We have analyzed several WS2-based nanotubes with

diameters larger than 10 nm that have been experimentally characterized. Our results were supported by density

functional theory calculations. The proposed methods are suitable for modeling any nanotubes rolled up from a

hexagonal layer.
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1. Introduction

The hexagonal nanotubes (NT) attract attention of re-

searches for last 30 years. Since publication of first papers

of Iijima and Tenne [1,2] comprehensive theoretical and

experimental studies were conducted on various types of

nanotubes. The key feature of the structure of the nanotube

is the presence of single direction with possible periodicity.

This results in unique structural, mechanical, electronic and

optical properties.

Depending on composition we can distinguish organic

and inorganic nanotubes (NT). Organic NTs comprise

carbon and ensembles of organic molecules. In particular,

authors [3] studied structure of the organic nanotube with

point symmetry C5. The inorganic nanotubes comprise

oxides or chalcogenides of transition metals, and can be also

formed by atoms of boron and nitrogen [4], silicon [5] or

pure metals (e. g., Ag, Pt, Fe, Co, Ni) [6]. Scope of NT ap-

plication is wide, considering their medical properties [7,8],
ability to adsorb gases [9], cathodoluminescence [10] and

photocatalytic properties for water splitting [11].
For NT theoretical modeling it is easy to consider that

nanotubes are made by rolling up from a layer. Due to

symmetry limitations the nanotubes can be rolled up from

the layer with rectangular, square, oblique or hexagonal

lattice [12]. There are many reviews of models of

”
nanotube from layer“, in which detail symmetry analysis is

performed [13–15]. In present paper the line groups theory

is used to consider NT symmetry.

Despite the development of modern computer technolo-

gies, ab initio modeling of nanotubes is still associated with

high computational costs, especially for systems containing

large number of atoms, and exactly such systems are

observed in experiments. Theoretical modeling of nanotubes

by ab initio methods not always is simple objective,

especially for multiwall nanotubes. In many cases for such

objectives solution we frequently use methods based on

classical mechanics [16–18], but under such approach we

can characterize only mechanical properties (for example,

Young’s modulus, Poison’s ratio). The band structure is

simulated using methods of quantum mechanics [13,15,19].
Besides, due to complexity of solution of the many-electron

problem, it is difficult to begin ab initio studies of nanotubes

of large diameter. Therefore, most modern papers relate

to achiral nanotubes, which have higher symmetry, with

diameter less than 100 Å, although experimentally obtained

nanotubes are predominantly chiral and have larger diameter

(10−300 nm) [20].
One of methods to solve this problem is described in

paper of P.N. D’yachkov
”
Quantum Chemistry of Nano-

tubes: Electronic Cylindrical Waves“ [21]. By combining

the linearized connected cylindrical wave basis and the use

of helical symmetry, significant success was achieved in the

nanotubes modeling, however, within the framework of the

used approach the modeling is carried out without geometry

optimization [22], this can introduce significant error into the

results.

Table 1 shows some literature data on the modeled

nanotubes: their type, chirality, diameter and reference to

source. For simple problems, instead of nanotubes, we

can calculate the layer properties using quantum mechanics

methods: the band gap, the top of the valence band, and

the bottom of the conduction band [23].
In case of MD modeling of carbon nanotubes NT first

of all operates as secondary system to model different

processes, for example gases adsorption [9,33]. So, their

diameters are limited by values below 50 Å, as during

modeling in system many other molecules were involved.
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Table 1. Literature data on different nanotubes studied by

calculation methods

Composition Chirality d, Å Method

WSSe Armchair 35.71 DFT [24]
WS2 Zigzag, armchair, DFT [20]

chiral n(2, 1) 38.48∗

WS2 Chiral n(4, 1) 41.90 DFT [25]
MX (M =Ga, In; Zigzag, armchair < 80 DFT [26]
X = S, Se, Te)

BN, TiO2 Armchair, zigzag 29.51 DFT [27]
HfO2, ZrO2 Armchair, Zigzag 18.0 DFT [28]

WS2 Armchair 32.19 DFT [10]
WS2 Zigzag, armchair 122.10 DFT [11]
Si Armchair 23.5∗ MD [5]

BeO Zigzag, armchair < 20∗ MD, DFT [18]
C Zigzag 12.04 MD [29]
C Zigzag 16.27 MD [30]

Peptide NT − MD [31]
C, BN Zigzag 28.19 MD [32]
C Armchair 142.4∗ MD [17]

WS2 Zigzag, armchair 195.5 MM [16]

No t e. ∗ — multiwall nanotube, diameter is specified for external

component. If asterisk is absent, the diameter is for single wall nanotube

(SWNT).

The inorganic nanotubes based on WS2 and oxides of

transition metals attracted significant attention of researches

due to their electronic, structural and mechanical properties.

This fact means importance of ab initio modeling of such

nanotubes using density functional theory (DFT).
Diameter of experimentally synthesized nanotubes

(∼ 2−300 nm) in major cases is much higher the diameter

of modeled nanotubes. This may lead to discrepancies

between theoretical and experimental data, especially for

mechanical and electronic properties. Maximum diameter

of modeled inorganic nanotubes was 195.2 Å (MD), at that
NT was achiral (zigzag) [16].
Authors of papers [34,35] showed that diameter and

ration of indices of chirality n2/n1 of nanotubes can be

experimentally measured with high accuracy. Besides in

paper [20] the chiral angles θ of single-wall components

of multi-wall nanotubes were determined. In said paper

the method of active synthesis of multi-wall nanotubes

with chiral angle similar for single-wall components was

suggested. As effective MD/MM modeling is possible for

multi-wall nanotubes, which components have same chiral

angles, this experimental approach is also important for

theoretical studies of properties of multi-wall nanotubes.

Considering all the above, it is of utmost importance to

understand how to effectively perform theoretical modeling

of large diameter chiral nanotubes to establish agreement

between theory and experiment.

We will focus on nanotubes WS2, as this material

demonstrates potential for photocatalytic splitting of wa-

ter [11], this is important source of
”
green“ hydrogen energy.

Besides, ab initio modeling of such type nanotubes using

the theory of line groups was already performed by our
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Figure 1. Hexagonal monolayer and rolled up from it nanotubes

of different types: a — achiral
”
armchair“ (n, n); b — achiral

”
zigzag“ (n, 0); c — chiral (n1, n2).

scientific group [25], so the suggested earlier approach will

be developed in present paper.

2. Symmetry of nanotubes rolled up from
hexagonal layer

Let’s review the hexagon layer with parameters

a = |a1| = |a2|, angle between vectors of elementary trans-

lations α = 60◦ . The chiral vector R = n1a1 + n2a2 be-

comes the length of circle of nanotube during rolling up.

Layer and appropriate nanotubes are shown in Figure 1.

Then diameter d can be calculated by formula

d =
a
π

n
√

ñ2
1 + ñ1ñ2 + ñ2

2, (1)

where n — greatest common divisor (GCD) between

(n1, n2).
Due to orthogonality condition R · T = 0 ratio of com-

ponents of translation vector T = t1a1 + t2a2 is also deter-

mined by ñ1 and ñ2:

2ñ1 + ñ2

ñ1 + 2ñ2

= − t2
t1
. (2)

Order of helical axis of NT is determined by formula (3)

q = nq̃ = n

∣

∣

∣

∣

ñ1 ñ2

t1 t2

∣

∣

∣

∣

. (3)

Helical vector H is important characteristic of tubes helicity,

and its uses are described in detail in review [14]. Com-

ponents of helical vector determine number r of turns of

rotation about axis of spiral with order q̃:

ñ1h2 − ñ2h1 = 1, (4)
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Table 2. Structural properties of NT with experimentally obtained

chirality indices and diameters [35]

(n1, n2) dexp, Å q Nat.(3 · q) t, Å θ◦ r

(109, 29) 126.4 31766 95298 687.6 11.495 4373

(121, 30) 138.8 38342 115026 755.4 10.1815 1269

(134, 30) 151.7 22876 68628 412.6 9.891 9903

(147, 30) 164.5 5982 17949 99.5 9.111 1791

(159, 30) 176.4 20634 61902 320.0 8.492 4803

r = h1t2 − h2t1. (5)

Inclination of vector R relative to a1 determines the chiral

angle θ. Common formula for this angle can be obtained

from simple geometrical considerations

θ = arctg

(

ñ2|a2| sinα
ñ1|a1| + ñ2|a2| cosα

)

, (6)

where α — angle between vectors of elementary transla-

tions. In case of hexagonal layer the formula (6) is converted
as follows

θ = arctg

(

ñ2

√
3

2ñ1 + ñ2

)

. (7)

Authors of paper [35] provide the experimentally deter-

mined ratio of chirality indices n2/n1 and diameters of

single-wall components of 5-wall nanotube WS2. Based

on formula (1) they suggested the chirality indices for

five single-wall components of multi-wall nanotube. Using

these indices we can calculate q, r , number of atoms in

elementary cell Nat. and length of the translation vector

|T| = t for all single-wall components of nanotube. All these

values are given in Table 2.

Large value of Nat. in elementary cell of single wall

nanotube can result in the idea that not only quantum-

mechanical, but even MD/MM modeling of these systems

is possible. However, it will be shown that this obstacle can

be overcome using the theory of line groups.

Let’s consider now several expressions from the theory of

spiral groups needed for further analysis and development

of our method. See details in papers [13,15,25]. The

line groups describe the symmetry of quasi-1D systems in

which periodicity along one direction is possible. These

groups can be factorized as L = ZP , where Z — the group

of generalized translations and P — the point symmetry

group of the monomer. The spiral groups can be divided

into 13 families depending on the symmetry operations in P
and Z. The chiral nanotubes WS2 relate to the first family

(factor-group P = Cn), and ”
armchair“ and

”
zigzag“ — to 4

(P = Cnh) and 8 (P = Cnv) families, respectively. Elements

of group Z can comprise point and translation parts: spiral

axis of order Q (CQ | f ), or sliding plane (σv | f ). As there

are no crystallographic limitations on order of axes, Q can

be any real number. If Q is rational, then we can write

Q = q/r = (q̃n)/r . This variable determines the spiral angle

of tube ϕ = 2π/Q = 2πr/q = 2πr/(q̃n). The line group of

chiral nanotube WS2 can be written as L = T r
q Cn (

”
polymer

factorization“). The crystallographic notation L = Lqp can

be determined using the transition formula

r p = lq + n, (8)

r p̃ = lq̃ + 1. (9)

3. Different approaches to modeling of
hexagonal nanotubes with large
diameter

3.1. Use of torsion angles to reduce number
of atoms in elementary cell

In paper [25] the method is suggested based on variable Q
use to study torsional deformations of NT. The torsion

deformation of tube means the change of nanotube’s spiral

angle. Before deformation the nanotube has spiral angle

ϕ0 = 2π

Q̃0
. The torsion angle is determined using the formula

ω = ϕx − ϕ0. (10)

Then deformed nanotube has Q̃x = 2π
ϕx

= q̃x

r x
. Number

of formula units in elementary cell of deformed nanotube

is nq̃x . So, the torsional deformations are associated with

change in parameter Q̃0 .

Let’s consider nanotube (109, 29) with Q̃0 = 31766
4373

= 7.26412. Using numerical search in definite range Q,

we can determine the torsional angle ω = −0.00021, this

corresponds to Q̃x = 7.26415 = 385
53

. This value is close to

the initial Q̃0, so changes in tube structure are negligible, but

number of atoms in the elementary cell abruptly decreases:

from 95298 to 1155. We can attempt to clarify this effect

using number theory, in particular the theory of Diophantine

approximations. In general, it states that any real number

can be represented approximately by a rational number.

Dirichlet [36] assumed that for any irrational number α there

are infinitely many fractions p
q such that

∣

∣

∣

∣

α − p
q

∣

∣

∣

∣

<
1

q2
. (11)

If we consider value Q̃0 = 31766
4373

as approximation of top

boundary of some irrational number then value Q̃x = 385
53

can also approximate this irrational number, at that for-

mula (11) is satisfied for Q̃x = p
q and α = Q̃0. Results

of quantum-mechanical modeling of deformed (109, 29)
nanotube are given in Sec. 5.

3.2. Chiral nanotube approximation by another
chiral nanotube

Using formulas (2)−(5), we can determine that for

second SW-component of 5-wall experimental nano-

tube from Table 2, (121, 30) q = 8342, d = 138.8 Å,
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Table 3. results of numerical search of nanotubes with fixed q,
equal to 182

(n1, n2) d, Å Q̃

(9, 1) 9.60 1.117

(16, 1) 16.62 1.065

(6, 5) 9.60 5.515

(11, 8) 16.62 2.716

(21, 7) 25.39 1.368

(35, 14) 43.97 2.364

(26, 13) 34.60 1.556

(52, 13) 59.92 1.273

(91, 0) 91.53 2.000

(91, 91) 158.64 2.000

θ = 10.815◦ . Considering the nanotube with chirality pa-

rameters (120, 30) = 30(4, 1), we can obtain the following

values: q = 420, d = 137.8 Å, θ = 10.893◦ . This nanotube,

being similar to the experimental one (121, 30), contains
less atoms in elementary cell, 1260 instead of 115026.

Besides, using method suggested in Sec. 3.1, we can

determine that for the torsion angle ω = −0.00006◦ we

have q = 423. It will be shown that both approaches are

applicable as we obtained similar results for both nanotubes.

3.3. Chiral nanotube approximation by achiral
nanotube

It is known that for nanotubes the band gap and position

of top of valence band and bottom of conduction band

almost do not depend on chirality in case of large diameter.

So, to study these properties the achiral tubes application

is the best approach. For selected diameters d = 126.4 and

d = 138.8 Å, using formula (1) we can determine achiral

(n, n) and (n, 0) nanotubes (73, 73), (126, 0), (80, 80),
(138, 0). For the achiral nanotubes q = 2n.
Note that for one q we can obtain nanotube with

different diameters, as chirality indices (n1, n2), q and d are

interrelated by formulas (1)−(3). For example, at q = 182

one can obtain the following results (Table 3):

4. Method of quantum-chemical
calculations

Ab initio calculations were performed in program

CRYSTAL17 [37,38] using functional HSE06 (hybrid with

25% of Hartree-Fock exchange). The rationale for the

choice of the basis set and the relativistic effective core

pseudopotentials for W and S can be found in [25].
Splitting of Brillouin zone (BZ) to sections 18× 1× 1

using Monkhorst–Pack grid was set [39], this gives in

general 10 k-points, uniformly distributed over BZ. self-

coupling was assumed as completed when difference of

energies between two cycles was below 10−9 a.u. Criteria

of calculation accuracy of Coulomb and exchange integrals

were set at level 10−10 10−10 10−10 10−10 10−20 a.u. These

criteria mean that during direct summation over grid the

single electron integrals and two-electron Coulomb integrals

below 10−10 are estimated using multipole expansion, and

the two-electron exchange integrals are below 10−20 are

ignored. Additional information can be found in User

Manual CRYSTAL17 [40]. Geometry was optimized for

both atomic coordinates and translation vector lengths.

Threshold of the gradient was set equal to 0.001 a.u. Bohr−1.

Criterion of atomic convergence by atomic displacement

was set equal to 0.005 Bohr.

5. Results and discussion

Besides two experimentally characterized in [35] single-

wall nanotubes, (109, 29) and (121, 30), we present results

of our method application to calculate several chiral nan-

otubes with diameter ∼ 100 Å, which correspond to chiral

angles obtained experimentally in [20]: θ = 2, 13, 15, 17◦ .

The nanotube formation energy (kJ/mol) is calculated by

formula

Estr =
ENT

NNT
− Emono

Nmono
, (12)

where number of formula units in the primitive cell for

nanotube and monolayer is NNT and Nmono, respectively.

Full electron energies per primitive cell of nanotube and

monolayer are presented ENT and Emono, respectively.

Table 4 gives the results of quantum-mechanical modeling

of different nanotubes with approximate diameter 126.4 Å.

It is evident that band gap of the nanotube with large

diameter approaches value of layer (2.53 eV [25]) for both

achiral, and chiral nanotubes. The optimized diameters

correspond to experimental measured diameters of compo-

nents of multi-wall nanotube. These results also indicate

that deformation of the initial nanotube has negligible effect

on its properties. But the larger angle ω is the larger

are effect on the diameter and values of formation energy

(see Appendix). Results of other calculations showed that

angles |ω| over 0.004◦ result in increase in deformation

energy to 100 kJ/mol and increase in diameter to 150 Å due

to the rupture of the nanotube. Same effect is observed

for polytwistane in paper [41] and requires additional

studies. For further consideration see Table 5, providing

results of calculation of nanotubes presenting experimental

diameter 138.8 Å.

Note that for this diameter Estr of deformed nanotube

hows minimum value as compared tochiral (120, 30) and

achiral nanotubes. In this case, the value of the band

gap is close to that for the monolayer (2.53 eV), and all

optimized diameters coincide with the experimental results.

Translation vectors for nanotubes (121, 30) and (109, 29)
have same value t = 8.36 Å, though these nanotubes have

different chiral angles: 10.8 and 11.5◦ respectively, and their

initial translation vectors are different: 765.4 and 687.5 Å
respectively. value 100 Å was given in [20] as minimum

diameter of component of multi-wall nanotube. In this case

Physics of the Solid State, 2024, Vol. 66, No. 8
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Table 4. Formation energies, optimized diameters, band gap

and optimized translation vectors for nanotubes with diameter

corresponding to (109, 29)

(n1, n2) Lqp ω◦∗ dopt. , Å
Estr , Ega p, eV t, Å
kJ/mol

(109, 29) L385247 −0.00021 126.9 1.22 2.529 8.36

(73, 73) L14673 0 126.7 1.13 2.531 3.16

(126, 0) L252126 0 126.9 1.16 2.531 5.47

No t e. ∗ — calculated by equation (10).

Table 5. Deformation energies, optimized diameters, band gap

and translation vectors for different approaches to presentation of

experimental diameter (121, 30) of nanotube

(n1, n2) Lqp ω◦ dopt. , Å
Estr , Ega p, eV t, Å
kJ/mol

(121, 30) L423272 −0.00006 139.4 0.843 2.533 8.36

(120, 30) L420270 0 138.4 0.953 2.532 8.36

(80, 80) L16080 0 138.9 0.93 2.533 3.16

(138, 0) L276138 0 138.4 1.02 2.533 5.47

Table 6. Formation energies, optimized diameters, band gap and

optimized translation vectors for different chiral nanotubes with

fixed diameter ∼ 100 Å

θ◦ (n1, n2) Lqp ω◦
Dopt., Estr , Ega p, t, Å

Å kJ/mol eV

2 (101, 4) L206101 −0.001 103.8 3.63 2.513 5.47

13 (87, 27) L315201 −0.010 103.9 4.26 2.504 8.36

15 (84, 31) L314199 −0.002 103.8 11.06 2.432 8.37

17 (81, 35) L313197 −0.003 104.0 22.19 2.318 8.39

the properties are more sensitive to chirality. Table 6 gives

results of calculation of four chiral nanotubes WS2.

All these nanotube have optimized diameters close to

104 Å, have small values Estr (about units and tens kJ/mol).
As the diameter is smaller than in nanotubes (109, 29)

Table 7. Single-electron properties of modeled nanotubes WS2

(n1, n2) Lqp dopt, Å EV B , eV ECB , eV Ega p, eV
Type

of transition

(109, 29) L385247 126.9 −6.43 −3.91 2.595 Direct

(73, 73) L14673 126.7 −6.46 −3.93 2.531 Direct

(126, 0) L252126 126.9 −6.46 −3.93 2.531 Direct

(80, 80) L16080 138.9 −6.45 −3.92 2.533 Direct

(138, 0) L276138 138.4 −6.45 −3.92 2.533 Direct

(101, 4) L206101 103.8 −6.46 −3.94 2.513 Direct

(87, 27) L315201 103.9 −6.46 −3.96 2.504 Direct

(84, 31) L314199 103.8 −6.45 −4.02 2.432 Indirect

(81, 35) L313197 104.0 −6.43 −4.11 2.318 Direct

and (121, 30), here it is possible to use larger torsional

deformation. With increase in chiral angle we can see the

decrease in band gap.

For the material to be suitable for photocatalytic water

splitting, several requirements shall be met — the band

gap values shall be in the visible range (1.5−2.6 eV),
and energy of top of valence band EV B and bottom of

conduction band ECB shall enter the range EV B < −5.67 eV

and ECB > −4.44 eV (values of oxidation and reduction po-

tentials of water). Besides, electronic transition ECB → EV B

shall be straight, otherwise probability of recombination of

charge carriers — electron/hole increases. The calculation

results of these properties are presented in Table 7.

All considered nanotube, except (84, 31), comply with

thew formal requirements of photocatalyst for water split-

ting. But values of band gap are getting very close to the

border (2.6 eV), which from practical view can result in

decrease in efficiency of this material as photocatalyst.

6. Conclusion

Methods ab initio of modeling hexagonal nanotubes of

large diameter are presented and evaluated on the example

of chiral nanotubes WS2 with experimentally determined

diameters and chiral angles. Obtained results indicate that

the use of achiral
”
armchair“ nanotubes is the most efficient

approach to reduce the number of atoms in the elementary

cell to match the desired diameter. If necessary in the

specific situations other strategies can be used. Though the

approach based on torsional deformation ensures making

insignificant structural changes in nanotube, for example,

reduce order of axis of rotation q and translation vector

by several orders, it can be implemented under definite

conditions only. In particular, this approach is effective

for chiral nanotubes only, in which there is a possibility

to decrease significantly the number of atoms in the

elementary cell. Despite the evident limitation, exactly use

of the torsional deformation ensures achievement of the

experiment compliance with theoretical modeling. Achiral

nanotube with large diameter can be modeled by general

method, as they have large symmetry and low transla-

tion vector.
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For chiral nanotubes low torsional deformations ensure

modeling of the stable nanotubes. With increase in absolute

value of torsion angle the deformation energy significantly

increases, as well as the nanotube diameter. All modeled in

this paper nanotubes, except one, in potential can be used

as photocatalyst for the water splitting.
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