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Creation of a dynamic microcavity by collision of half-cycle light pulses

in a resonant medium
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A simple theoretical approach is proposed, based on an approximate solution of the time dependent Schrödinger

equation in the first order of perturbation theory, showing the possibility of creating a dynamic microcavity in

the collision of half-cycle, extremely short light pulses in a multilevel medium. Based on the proposed approach,

the possibility of controlling the parameters of a microcavity with an increase in the number of colliding pulses is

shown.
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Introduction

In recent years, tremendous progress has been seen

in generation of ultrashort electromagnetic pulses with

duration of a few electromagnetic field oscillations in the

attosecond range [1,2]. This allows to study and control

electron dynamics in a substance on intra-atomic time scales

comparable with the orbital period of an electron in an

atom [3–5]. Further reduction of the pulse duration leads

to occurrence of pulses with inherently extremely short

duration equal to a half of field period. Such pulses are

called half-cycle or unipolar pulses [6]. They have a nonzero

electric area defined in a given point of space r as an integral

of field strength E over time t [7]

SE =

∫

E(r, t)dt. (1)

Half-cycle light pulses have good prospect of application

for ultrafast control of atoms, molecules, quantum dots,

charge acceleration, etc., see reviews [6–9] and the cited

literature. When the pulse duration is shorter that the

orbital period of the electron in an atom, then its action

on a microobject is defined by the electric area, rather than

by the pulse energy [10]. The half-cycle pulses are, thus,

able to control quantum systems faster and more efficiently

than traditional multicycle, bipolar pulses.

One of the possible applications is the generation of

extremely short pulses and ultrafast control of population

difference gratings when pulses do not overlap immediately

in a medium or collide in the center of a medium [11–13],
see also [14] and the cited literature. This effect occurs

in the coherent interaction between pulses and a medium

when the pulse duration and delays between pulses are

shorter than the medium polarization relaxation time T2.

Occurrence of atomic population gratings in this case is

attributed to the interaction between incident pulses and

travelling polarization waves of a resonant medium induced

by the previous pulse [11–14]. In case of a rare medium and

when the pulse amplitude is small, it is suggested that the

gratings occur due to the interference of the electric areas

of incident pulses [15].

In [16], one interesting phenomenon has been found —
possibility of inducing population gratings in a medium in

the form of dynamic
”
microcavities“ arising from collision

of unipolar nonharmonic pulses in a two-level medium.

In this case, the population difference in the pulse overlap

area is almost constant, and on its periphery the population

difference varies in space or has another value, other than

that in the pulse overlap area. In this sense, a refractive

index step of a medium occurs which suggests that a

dynamic
”
microcavity“ with controlled is formed in the

medium.

In subsequent studies [17,18], the dynamics of such

structures has been studied in more detail in a two-level

medium. It has been shown that the effect of creation

of dynamic microcavities also takes place in a three-level

medium [19,20]. All these works have performed the anal-

ysis through the numerical solution of the Maxwell −Bloch

system of equations. Meanwhile, the approximate analytical

description of gratings was proposed only for the case

when pulses do not overlap in a medium [11–14], and for

overlapping unipolar pulses with unusual waveforms [20].

The objective of this study is to investigate a simple

approach that theoretically predicts the occurrence of dy-

namic microcavities in collision of half-cycle light pulses in

the center of a resonant medium. The approach is also

used to describe the behavior of these microcavities and to

evaluate the properties of the induced population difference

gratings. This approach uses an approximate solution of

the Schrödinger time equation through perturbation theory
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A pair of half-cycle pulses moves over the medium from opposite

directions and collides in the center of the medium in a point with

coordinate z = z c .

when the excitation pulse field amplitude is low, and is

applicable to a rare multi-level medium. It is a logical

generalization of a previous approach [11–14] used to

calculate the dynamics of population gratings through a

sequence of pulses that don’t overlap in a medium.

Dynamics of microcavities

Let a pair of half-cycle pulses collides in a multi-level

medium at some undetermined time in the center of the

medium in a point with coordinate z = z c (Figure).
As in [11–15], for the purpose of the approximate

analytical description of gratings, the medium is assumed

to be rare, thus, neglecting the pulse waveform during

propagation and the influence of particles on each other.

It can be easily shown in this case that the problem of

pulse sequence action on an extended medium is limited to

a problem of excitation of a single atom or molecule by a

variable-delay pulse sequence.

Dynamics of the quantum system in the pulse field is

described by the Schrödinger time equation for the electron

wave function [21]:

i~
∂ψ

∂t
=

[

Ĥ0 + V (t)
]

ψ. (2)

Here, ~ is reduced Planck’s constant, Ĥ0 is the system’s

Hamiltonian, V is the potential of interaction between an

atom and external field that for the dipole approximation

case is written as: V (t) = −dE(t), d is the dipole moment

of an atom. In a low-field approximation, the population of

the k-th medium energy level is calculated to the first order

in perturbation theory using the following expression [21]:

w1k =
d2
1k

~2

∣

∣

∣

∣

∫

E(t)eiω1k tdt

∣

∣

∣

∣

2

. (3)

Here, d1k is the transition dipole moment, ω1k is the

medium transition frequency. We take a temporal shape

of incident half-cycle Gaussian pulses 1 and 2 transmitted

with the delay 1:

E(t) = E01 exp
[

−t2/τ 2
1

]

+ E02 exp
[

−(t − 1)2/τ 2
2

]

. (4)

Apparently, the electric areas of such pulses are

SE,1,2 = E01,2τ1,2
√
π . For simplicity of calculation of

populations using expression (3), we assume below that

the half-cycle pulse duration (4) is much lower than the

resonant transition period of the medium T1k = 2π/ω1k ,

τ1,2 ≪ T1k (sudden perturbation approximation [22–24]).
In this case, the exponent under the integral in (3) is

small compared with 1. When calculating the populations

w1k , the exponential factor eiω1k t under the integral sign is

approximately equal to 1 and is inessential.

According to the numerical experimental results [16–20],
when a pair of unipolar pulses collides in the center of

the medium, after the first collision in the vicinity of the

pulse overlapping area, the population difference is constant

in space. On either side, to the left an to the right of

the overlapping area at z ≪ z c and z ≫ z c , where the

pulses don’t overlap, a population difference grating may

occur. Using expression (3), we derive the expressions for

populations at z ≪ z c and z ≫ z c [14]:

wk =
d2
1kS2

E,1

~2
+

d2
1kS2

E,2

~2
+ 2

d2
1k

~2
SE,1SE,2 cosω1k1. (5)

Hence, wk is defined by a sum of squares of the electric

areas of pulses and depends periodically on the delay

between pulses 1, is defined by the interference of the pulse

areas [15].
In the pulse overlapping area, a pair of pulses (4) acts

as a single pulse whose electric area is equal to the sum of

areas of the initial pulses SE = SE,1 + SE,2. And to calculate

the population in the overlapping area using the expression,

it necessary to set a zero delay between pulses 1 = 0 in (5)

w1k =
d2
1k

~2
S2

E . (6)

Thus, in the vicinity of the point with z = z c , the population

in the pulse collision area is defined by a square of the total

electric area of pulses. And outside the pulse overlapping

area z ≪ z c and z ≫ z c , the populations are described

by expression (6). This expression shows that a periodic

population grating may be created on the periphery of the

pulse overlapping area. Dependence of the populations on

the spatial coordinate is contained in the delay 1 ∼ z/c
that, in case of an extended medium, is proportional to the

time of second pulse arrival at a point in the medium with

coordinate z [13,14].
It is apparent that this approach makes it possible to pre-

dict the appearance of a microcavity with Bragg type mir-

rors in the medium — population in the pulse overlapping

area is constant and defined by expression (5). On either

side of the overlapping area, the medium population and,

accordingly, the refractive index vary periodically in space

according to expression (6). Results of this prediction agree

with the numerical calculations using the Maxwell−Bloch

system of equations that predict the appearance of such

type of microcavity [16–20].
It is apparent that if these pulses collide again in

he medium after some time, then the above-mentioned
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procedure may be also applicable to the calculation of the

modified microcavity parameters. In case of the impact of 4

identical pulses, the filed strength will be written as

E(t) = E0 exp
[

−t2/τ 2
]

+ E0 exp
[

−(t − 1)2/τ 2
]

+ E0 exp
[

−(t − 1− 123)
2/τ2

]

+ E0 exp
[

−(t − 1− 123 − 134)
2/τ 2

]

(7)

where 123 and 134 is the delay between the second and

third, fourth pulses, respectively. SE0 = E0τ
√
π is the

electric area of pulses. For the bound state populations

outside the pulse overlapping area at z ≪ z c and z ≫ z c ,

we have [13]:

w1k = 2
d2
1kS2

E0

~2

∣

∣1 + eiω1k1

+ eiω1kτ eiω1k123 + eiω1k1eiω1k123eiω1k134
∣

∣

2
. (8)

This expression is used to calculate the parameters of

a dynamic microcavity modified as a result of the second

collision of pulses. The similar applies to the calculation

of the change in parameters of such cavity after the third

collision, etc.

Conclusion

The study proposes a simple analytical approach based on

an approximate solution of the Schrödinger time equation to

the first order in perturbation theory the analysis of which

is used to predict the possibility of creation and ultrafast

control of dynamic microcavities induced during collision

of half-cycle light pulses in the resonant medium. This

approach is applicable when the incident pulse amplitude

is small and the medium is rare. Results of the analysis

using this approach predict the occurrence of a dynamic

microcavity after pulse collision — population in the over-

lapping area is almost constant, and a harmonic population

difference grating (Bragg type mirror) occurs on either

side of the area. These results agree qualitatively with the

results of numerical solution of the Maxwell-Bloch system

of equations for the extended medium at small excitation

field amplitudes [16–20]. Note also that the proposed

approach may be used to calculate the dynamics of such

cavities through the use of a sequence of a greater number

of colliding pulses. The investigated microcavities may

be interesting for short-term light storage systems, ultrafast

optical switches and other ultrafast optical applications.
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