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Using examples of known spatial distributions of intensity in the cross section of a laser beam in the plane of the

emitter, formulas for the measurement error of the second moments in the far zone by a matrix radiation detector

associated with determining the beam width and divergence angle using the existing standard ISO 11146 : 2021

”
Lasers and laser-related equipment. Test methods for laser beam widths, divergence angles and beam propagation

ratios, Part 1−2“.

Gaussian, exponential and uniform spatial intensity distributions in the emitter plane are considered. It is

shown that the use of the mentioned standard leads to incorrect measurements due to the divergence of the

measured value. In this case, the conditions ensuring the convergence of results are practically impossible to fulfill.

Recommendations for the measurement process are proposed that eliminate the noted drawback. Key words:

metrology of laser radiation, measurement methods, moments of intensity distribution, matrix radiation receiver,

laser beam width, divergence angle.
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Introduction

Standard method for measuring laser beam width and

divergence angle is currently based on determining the

initial moments of spatial intensity distribution in the beam

cross-section [1].

Development of matrix radiation receiver (MRR) com-

ponents provided the opportunity for almost real-time mea-

suring the above-mentioned parameters. However, when

measuring the MRR beam width and divergence angle

using the initial moments of intensity distribution, there is

a methodological measurement accuracy issue in that there

are generally no finite values of the second moments of the

radiated field.

This issue was first focused on by Yu.A. Ananyev in [2].
Discussion of the measured properties has identified that

they gave reasonable finite value only when stringent

conditions imposed on the form of field distribution were

met. These stringent conditions have not been rigorously

formulated, but it has been established that, when there

are discontinuities in the dependence of spatial intensity

distribution on transverse coordinates, the second moments

of angular distribution associated with the parameter M2,

width and divergence angle become unrestrictedly large.

In [3], such conditions are formulated and it is proved

theoretically that the second moments diverge also for

all continuous spatial intensity distributions, if the field

amplitude modulus or intensity at the boundary of the

emitter aperture is nonzero, which occurs in actual practice.

However, despite this circumstance, International Stan-

dard ISO 11146-2005 has been introduced since the early

2000s. This standard specified methods for measuring

laser beam width and divergence angle and contained the

above-mentioned measurement accuracy issue. In 2008,

this standard was adopted in the Russian Federation as

GOST R ISO 11146-2008 and represented the complete

authentic text of ISO 11146-2005. In 2021, a new version

of the international standard was published [1], where the

measurement accuracy issue was not resolved.

This fact has encouraged the authors to return to the

issue identified by Yu.A. Ananyev as early as in 1990 and

to show the errors arising in practice through the case study

method [1].
This study is the visual illustration of the above-mentioned

incorrect measurements and its objective is to investigate

the second moment measurement error induced by nonzero

values of the amplitude modulus or intensity at the

boundary of the emitter aperture as well as by the limited

MRR measurement range. A number of known spatial

distributions of amplitude in the emitter plane was chosen

for illustration: Gaussian, exponential and uniform.

The choice of these distributions is determined by the

fact that the Gaussian spatial amplitude distribution with

quickly decreasing intensity in laser beam cross-section that

is of interest when investigating laser systems corresponds to

the radiating fundamental mode of the resonator. Uniform

distribution is also of interest for practical applications;

it features constant amplitude in the emitter plane that

is nonzero at the aperture boundaries. The exponential
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amplitude distribution is intermediate between the Gaussian

and uniform distributions. This model is visible and

convenient for calculations and leads to far-field intensity

distribution with weakly decreasing
”
wings“ resembling the

Cauchy distribution.

Divergence of the measured quantity impairs the unifor-

mity of laser beam parameter measurements. Metrological

aspects of this issue have been discussed in detail in [4,5],
where it has been shown that the issue may be resolved by

considering the lower level of the MRR dynamic range.

The study also proposes the recommendations for the

measurement process to rectify the above-mentioned short-

coming.

In [6], an attempt has been first made to characterize

laser radiation using the spatial movement language and

a parabolic behavior of the dependences of the second

moments of intensity distribution on distance z . The pa-

rameter M2 governing the laser beam
”
quality“ is examined

on the same basis [7].
Reasoning leading to such dependence of the second

moments is based on the quasioptics equation. This equa-

tion implies the known connection between the complex

field amplitude in the radiating field beam cross-section

U(x , y, z ) with a z coordinate and the complex radiating

field amplitude in the source plane u(x1, y1, 0) [8]:

U(x , y, z ) = A(z )

∞
∫

−∞

∞
∫

−∞

u(x1, y1, 0)

× exp
(

i
π

λz

(

(x − x1)
2 + (y − y1)

2
)

)

dx1dy1, (1)

where

A(z ) = exp(i2πz/λ)/(iλz ),

λ is the radiation wavelength.

We write the radiating field characteristics in terms of the

first and second moments of intensity distribution I(x , y, z )
normalized to the zeroth moment:

m10(z ) = m10(z )/m00, m01(z ) = m01(z )/m00,

m20(z ) = m20/m00, (2)

m02(z ) = m02(z )/m00, m11(z ) = m11(z )/m00,

m10(z ) =

∞
∫

−∞

∞
∫

−∞

xI(x , y, z )dxdy, (3)

m01(z ) =

∞
∫

−∞

∞
∫

−∞

yI(x , y, z )dxdy, (4)

m20(z ) =

∞
∫

−∞

∞
∫

−∞

x2I(x , y, z )dxdy, (5)

m02(z ) =

∞
∫

−∞

∞
∫

−∞

y2I(x , y, z )dxdy, (6)

m11(z ) =

∞
∫

−∞

∞
∫

−∞

xyI(x , y, z )dxdy, (7)

m00(z ) = m00(0) = m00 =

∞
∫

−∞

∞
∫

−∞

I(x , y, z )dxdy, (8)

I(x , y, z ) = |U(x , y, z )|2.
For the Gaussian elliptical intensity distribution, the de-

pendence of the beam width at the intensity level 1/ exp(2)
on the distance z is defined using the following equations [1]
in terms of the normalized moments:

dx(z ) =

2

√

2
[

σ 2
20(z )+σ 2

02(z )+γ

√

(

σ 2
20(z )−σ 2

02(z )
)2

+4σ 2
11(z )

]

,

dy(z ) =

2

√

2
[

σ 2
20(z )+σ 2

02(z )−γ

√

(

σ 2
20(z )−σ 2

02(z )
)2

+4σ 2
11(z )

]

,











































(9)

σ 2
20(z ) = m20(z ) −

(

m10(z )
)2
,

σ 2
02(z ) = m02(z ) −

(

m01(z )
)2
,

σ11(z ) = m11(z ) − m10(z )m01(z ),

γ =
|σ 2

20(z ) − σ 2
02(z )|

σ 2
20(z ) − σ 2

02(z )
=

{

1, if σ 2
20(z ) ≥ σ 2

02(z ),

−1, if σ 2
20(z ) < σ 2

02(z ).

Equation (1) in [8] has been derived under the assumption

on transverse dimensions of the source. Therefore, the

replacement of the finite limits of integration in (1) with

the infinite limits throughout the emitter positioning plane

is an assumption to be defined.

For this, in [8] it is assumed that the modulus of field

amplitude or radiation source intensity outside the emitter

aperture is equal to zero, but is not necessarily equal to zero

at the aperture boundary.

In [3] it is shown that for all continuous intensity

distributions the condition under which the second moments

of radiating field exist is reduced to the intensity (amplitude)
I(x , y, 0) equal to zero at the aperture boundaries in the

emitter plane, which is not generally fulfilled in a real

measurement process. Expressions (5) and (6) represent

diverging integrals and width characteristics (9) of the

radiating field lose their meaning.

In actual practice, the second moments of the measured

field are calculated:

— by a limited region of space � defined by the MRR

aperture size in the measurement plane;

— using MRR with a limited dynamic

measurement range relative to the intensity distribution

0 < r ≤ I(x , y, z )/Imax ≤ 1, where r is the lower limit of

detection of the MRR measurement range.

In this case, the integration in (3)−(8) is conducted in

finite limits and the second moments always exist.
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However, the result of such measurements is applicable

to the characteristics of the measured field, rather that of the

radiating field that has no such characteristic, which defines

the methodological measurement accuracy issue described

in [4,5].

Second moment of the measured laser
beam field with the Gaussian spatial
amplitude distribution in the emitter plane

We will deal with the far-field distribution of laser beam

intensity in the Fraunhofer approximation [8]

I(x , y, z ) =
1

λ2z 2

∣

∣

∣

∣

∣

T/2
∫

−T/2

T/2
∫

−T/2

u(x1, y1, 0)

× exp

(

−i
2π

λz
(xx1 + yy1)

)

dx1dy1

∣

∣

∣

∣

∣

2

, (10)

integration in (10) is performed within the square emitter

aperture with the linear dimensions T × T ,

u(x1, y1, 0) = R4(x2
1+y2

1)/T 2
0 (11)

— the Gaussian spatial distribution of amplitude in the

emitter plane equal to R(0 < R ≤ 1) with x1 = ±T0/2;

y1 = 0 or x1 = 0; y1 = ±T0/2.

If T = T0, then the amplitude at the emitter aperture

boundaries is also equal to R.
Then, we consider the normalized second moment (2)

of the measured field intensity distribution (10) within the

limited square aperture of MRR with the linear dimensions

L × L in the measurement plane. The normalized second

moment is calculated using equations (5) and (8) where

finite limits of integration are replaced with infinite limits

from −L to L.
After substitution of (11) into (10) and transformation

for the second moment of the Gaussian beam (2) we obtain

mG
20(z ) =

mG
2 (z )

mG
0 (z )

, (12)

mG
2 (z ) =

L
∫

−L

x2

( T/2
∫

−T/2

R4x2
1/T 2

0 cos

(

2πx
λz

x1

)

dx1

)2

dx ,

(13)

mG
0 (z ) =

L
∫

−L

( T/2
∫

−T/2

R4x2
1/T 2

0 cos

(

2πx
λz

x1

)

dx1

)2

dx . (14)

Integral (13) with finite values of T and L → ∞ generally

diverges and the second moment (12) does not exist, while

integral (14) always has a finite value.
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Figure 1. Dependence of the second moment on ρ with

T = 0.01m for R = 0.2 (1), 0.01 (2), 0.15 (3), 0.1 (4).

We consider diverging integral (13) and introduce u = x
λz

for convenience. After calculating (13) with T0 = T with

respect to x1, we obtain

mG
2 (z ) =

2λ3z 3b2

π

ρ
∫

0

u2 exp(−2b2u2)

×
(

erf(a + ibu) + erf(a − ibu)
)2

du, (15)

where

a =
√
− lnR, b =

πT

2
√
− lnR

,

erf(u) =
2√
π

u
∫

0

exp(−x2)dx , ρ =
L
λz

.

Expression (13) after normalization to λ3z 3 may be

written as

m∗G
2 (ρ) =

mG
2 (z )

λ3z 3
=

2b2

π

ρ
∫

0

u2 exp(−2b2u2)

×
(

erf(a + ibu) + erf(a − ibu)
)2

du. (16)

Figure 1 shows the dependence m∗G
2 (ρ) calculated us-

ing equation (16) for various R. It can be seen that as ρ

grows the above-mentioned quantity increases and more

considerable change occurs at larger R.
If the emitter aperture is infinite (T → ∞) and

lim
x1→∞
y1→∞

R4(x2
1+y2

1)/T 2
0 = 0,

then integral (16) converges at ρ → ∞ and the following

equation is valid

m∗G
2 = lim

ρ→∞
m∗G

2 (ρ) =

√
−2 lnR
4π3/2T0

. (17)
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For the actually existing emitter aperture with the finite

dimensionsT = T0, at whose boundaries R → 0, diver-

gence of integral (16) with the growth of ρ is negli-

gible. Thus, for small R = 0.01 (Figure 1, curve 2)
with T = T0 = 0.01m, m∗G

2 (1500) ≈ 13.646 that differs

from limit (17) m∗G
2 ≈ 13.626 by ≈ 0.15%.

We determine the main parameters affecting the di-

vergence of integral (16) by considering the asymptotic

expansion of its subintegral function at lager u.
We write (16) as a sum of two summands

m∗G
2 (ρ) = m∗G

2 (ρ∗) +
b2

2π

ρ
∫

ρ∗

u2 exp(−2b2u2)

×
(

erf(a + ibu) + erf(a − ibu)
)2

du. (18)

where ρ∗ may be assumed as a parameter defining some

value in the MRR measurement range beginning from

which the asymptotic expansion of the subintegral function

of the second summand is valid.

The first summand defined in the finite limits of integra-

tion is a finitely defined integral, the second summand — is

the diverging integral at ρ → ∞.

If

u ≫ a/b =
−2 lnR
πT

,

the square of sum included in the second summand (18)
may be reduced to the asymptotic form [9]

(

erf(a + ibu) + erf(a − ibu)
)2

=
4R2 exp(2b2u2)

πb2u2

×
(

sin2(2abu) − a sin(4abu)

bu
+ o(1/u)

)

.

Then

b2

2π

ρ
∫

ρ∗

u2 exp(−2b2u2)
(

erf(a + ibu) + erf(a − ibu)
)2

du

=
2R2

π2

( ρ
∫

ρ∗

(

sin2 πTu +
2 lnR
πTu

sin 2πTu + o(1/u)

)

du

)

,

(19)
whence it follows that the divergence of integral (18) at

ρ → ∞ is defined by two first summands of the subintegral

function. With the first summand making the main

contribution to the divergence. As a result, we get

ρ
∫

ρ∗

u2 exp(2b2u2)
(

erf(a + ibu) + erf(a − ibu)
)2

du

≈ 2R2

π2

ρ
∫

ρ∗

(sin2 πTu)du =
R21ρ

π2

×
(

1− sinπT1ρ

πT1ρ
cos

(

πTρ∗

(

2 +
1ρ

ρ∗

))

)

,

where 1ρ = ρ − ρ∗.

Taking into account (19), the following approximate

expression is valid for (18)

m∗G
2 (ρ) ≈ m∗G

2 (ρ∗) +
R21ρ

π2

×
(

1− sinπT1ρ
πT1ρ

cos

(

πTρ∗

(

2 +
1ρ

ρ∗

))

)

. (20)

Since various lower levels of the measurement range may

be defined for MRR depending on ρ, then from (20) it

follows that the measured moments of the same distribution

will differ, which impairs the uniformity of beam diameter

and divergence angle measurements. It is apparent that

the value of the above-mentioned level will be limited

only by the lower limit level r of the MRR measurement

range. As the measurement range is extended (i. e. as ρ

and, respectively, 1ρ increase), the second moment will

grow. The quantity

δG(R) ≈ m∗G
2 (ρ) − m∗G

2 (ρ∗)

m∗G
2 (ρ∗)

, (21)

where

m∗G
2 (ρ) − m∗G

2 (ρ∗) ≈ R21ρ

π2

×
(

1− sinπT1ρ
πT1ρ

cos

(

πTρ∗

(

2 +
1ρ

ρ∗

))

)

,

where may be considered as an approximate relative

measurement error of the second moment induced by the

divergence of integral (16).
It is clearly seen from (21) that the error contains a linear

component R21ρ

π2 increasing with the growth of 1ρ and R.
With small R, the error is low, which is in line with the

results shown in Figure 1 (curve 2).
To derive the main conclusions, we consider two lower

levels of the MRR measurement range equal to 0.001

and 0.0001 for various R and define the relative mea-

surement error δG(R) at T = 0.01m using equation (21),
where m∗G

2 (ρ∗) and m∗G
2 (ρ) are calculated using exact

equation (16), ρ∗ corresponds to the relative spatial intensity

distribution at 0.001, and ρ — at 0.0001.

The lower level of the relative measurement range is

limited by the performance capabilities of the MRR to be

used. Thus, for ORCA-Flash4.0 V3 Digital CMOS C13440-

20CU camera the lower limit is r = 2.7 · 10−5 and the

lower level r∗ of the measurement range shall not be below

this value.

Thus, we consider the second moment measurement

error of the same distribution measured by two MRR with

different lower measurement range levels depending on R.
The calculation results are shown in Figure 2, curve 1). It

is seen that, when T = 0.01m, δG(R) grows considerably
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Figure 2. Dependence of the second moment measurement

error on R at T = 0.01m for (1) the Gaussian δG(R) and (2)
exponential δexp(R) spatial intensity distributions in the emitter

plane.

as R increases beginning from some percent points at

R ≈ 0.1 to ≈ 28% at R = 0.2.

It is fair to say that measurements of the same Gaussian

parameter of the MRR beam with different lower measure-

ment range levels are very different and incomparable.

Second moment of the measured laser
beam field with the exponential spatial
amplitude distribution in the emitter plane

We consider the far-field spatial distribution of the laser

beam intensity (10) with exponential spatial distribution of

amplitude on the square aperture T × T in the emitter plane

u(x1, y1, 0) = R2(|x1|+|y1|)/T0 , (22)

R (0 < R ≤ 1) — amplitude at x1 = ±T0/2; y1 = 0 or

x1 = 0; y1 = ±T0/2.

If T0 = T , then the amplitude at the emitter aperture

boundaries is equal to R.
Calculation of the second moment using equation (2)

including (5) and (8) for distribution (22) gives the

expressions equivalent to (12)−(14)

mexp
20 (z ) =

mexp
2 (z )

mexp
0 (z )

,

ρ

40

10

14001000200

50

600

30

1

2

3

4

*
ex
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2

1800
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Figure 3. Dependence m∗exp

2 (ρ) at T = 0.01m for R = 0.5 (1),
0.3 (2), 0.2 (3), 0.1 (4).

where the integral

mexp
2 (z ) =

L
∫

−L

x2

( T/2
∫

−T/2

R2|x1|/T0 cos

(

2πx
λz

x1

)

dx1

)2

dx

— diverges,

mexp
0 (z ) =

L
∫

−L

( T/2
∫

−T/2

R2|x1|/T0 cos

(

2πx
λz

x1

)

dx1

)2

dx

— converges at L → ∞.

When T0 = T , the integral that diverges at ρ → ∞ is

written as follows after normalization to λ3z 3

m∗exp
2 (ρ) =

mexp
2 (z )

λ3z 3
=

2T 2

ln4 R

×
ρ
∫

0

u2

(

uπRT sin(πTu) + lnR
(

R cos(πTu) − 1
)

1 + π2T 2u2/ ln2 R

)2

du,

(23)
where ρ = L

λz .

The parenthesized subintegral function expression in (23)
is characterized by slowly decreasing

”
wings“ at u → ∞.

Therefore, divergence of integral (23) is more significant

compared with (18).

Figure 3 shows the dependence of the second moment

on ρ for various R calculated using equation (23). As ρ

and R increase, the above-mentioned quantity grows in-

finitely as (18).
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Figure 4. Dependence m∗uniform
2 (ρ) at T = 0.01m for uniform

intensity distribution in the emitter plane (R = 1).

As above, we consider two lower levels of the MRR

measurement range equal to 0.001 and 0.0001 for various R
and define the second moment measurement error δexp(R)
at T = 0.01m using an equation equivalent to (21), where

m∗exp
2 (ρ∗) and m∗exp

2 (ρ) are calculated using equation (23),
ρ∗ corresponds to the relative spatial intensity distribution

at 0.001, and ρ — at 0.0001.

The calculation results are shown in Figure 2, curve 2). It
is seen that at the finite value of T , the measurement error

grows considerably as R increases beginning from≈ 12% at

R ≈ 0.01 to ≈ 54% at R ≈ 0.2.

The measurements, as for the Gaussian bean, are incom-

parable and characterized by even higher error.

Second moment of the measured laser
beam field with the uniform spatial
amplitude distribution in the emitter plane

Expression equivalent to (16) with uniform amplitude

distribution in the emitter plane may be derived from (16)
by the passage to the limit at R → 1.

It can be easily shown that in this case

m∗uniform
2 (ρ) =

ρ

π2

(

1− sin(2πTρ)

2πTρ

)

. (24)

Figure 4 shows almost linear dependence of the growth

of m∗uniform
2 (ρ) plotted using (24). In this case, the

measurement error of m∗uniform
2 (ρ) measured by different

MRRs may exceed 100%.

Conclusions

The results of the distribution case study clearly prove

that the method for measuring laser beam width and

divergence angle, as described in [1], based on using the

initial moments of spatial intensity distribution gives invalid

results.

The general reason for such results, as specified in the

introduction, is the divergence of the second moments of

the radiating field, if the values of amplitude R (intensity)
at the emitter aperture boundaries are nonzero, as is

actually the case. The study shows that the divergence is

negligible at small R , but R cannot be controlled during

the measurement process. Moreover, for the uniform spatial

intensity distribution, always R = 1.

It follows from the curves shown in Figure 2 that the

divergence of the second moments induces considerable

measurement error, therefore parameters of the same laser

beam measured by different MRRs are incomparable.

Thus, it is wrong to use the second moment as a universal

characteristic for measuring beam parameters, which poses

the measurement accuracy issue. From metrology stand-

point, a non-existent quantity such as the diverging second

moment of a radiating field cannot be used as a standard

measure. If in some particular cases the evaluation of the

second moment gives an acceptable result, in particular at

small R (curve 2 in Figure 1), the second moment cannot

be reliably reproduced due to the lack of control of R and a

variety of the types of spatial intensity distribution.

According to the authors, if the described characteristic

for measuring beam parameters is not given up, the only

possible solution of the issue is to constrain artificially the

relative distribution range of the radiating field intensity by

some consistent values of the lower level r∗ (r∗ ≥ r), and
these values shall be specified during calibration.

It is reasonable to set and specify r∗ according to the

desired lower level of the dynamic intensity measurement

range of MRRs used in various measuring systems. In this

case, the measured beam widths and divergence angles

become dependent on r∗, but for different MRRs with

the same r∗ the measurement results will be comparable.

However, the mere fact of such dependence is a shortcom-

ing of this measurement method as has been also focused

on in [2], and it has been emphasized that a promising

approach to such measurements was to use the aberration

factor [10] characterizing the parameters of an emitter.

Together with the aberration factor, it is suggested also

to consider a generalized laser beam width [11,12] in the

measurement plane, which will be the subject of further

research and will define the method for measuring beam

width and divergence angle without the above-mentioned

shortcomings.
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