04.1;01.1

Кинетическая теория начальной стадии работы плоского вакуумного диода при импульсно-периодическом режиме эмиссии катодной плазмы

© А.В. Козырев, В.Ю. Кожевников, А.О. Коковин

Институт сильноточной электроники СО РАН, Томск, Россия E-mail: kozyrev@to.hcei.tsc.ru

Поступило в Редакцию 13 июня 2024 г. В окончательной редакции 19 июля 2024 г. Принято к публикации 20 июля 2024 г.

> Проведено моделирование нестационарного процесса формирования электронного пучка в плоском вакуумном диоде с плазменным катодом, функционирующем в режиме последовательности импульсов длительностью 3 ns с паузами между импульсами 2 ns. Плазма описывается на основе бесстолкновительной кинетики электронов и однократно заряженных ионов в самосогласованном электрическом поле. Плотность тока электронного пучка зависит от концентрации катодной плазмы и может в несколько раз превышать плотность тока Чайлда—Ленгмюра. Движение эмиссионной границы плазмы в сторону анода обусловлено формированием в промежутке локальной области инверсного электрического поля. Показано, что в режиме генерации катодной плазмы область инверсии поля представляет собой структуру типа "виртуальный катод", а в паузах между режимами генерации прикатодной плазмы область инверсии имеет структуру типа "горб потенциала".

Ключевые слова: электронный пучок, вакуумная дуга, плазменный катод.

DOI: 10.61011/PJTF.2024.22.59131.20022

Данное исследование относится к области теоретического моделирования вакуумного разряда (вакуумная дуга), когда на катоде вакуумного диода с приложенным к нему напряжением возникают нестационарные плазменные эмиссионные центры, сокращенно называемые эктонами (ECton от слов "emission centre") [1,2]. Известно, что в такой ситуации с границы плазменных образований начинается эмиссия электронов, которые, ускоряясь в электрическом поле, формируют электронный пучок. В процессе генерации пучка катодная плазма расширяется в промежуток с характерными скоростями в единицы cm/µs, изменяя первеанс диода. Именно процесс заполнения плазмой промежутка определяет длительность импульса тока электронного пучка. Поэтому теоретическое описание механизма расширения плазмы, генерируемой в прерывистом режиме ее эмиссии, представляет большой фундаментальный и практический интерес.

Движение плазмы в вакууме представляет собой трудный для теоретического описания процесс. Нужно математически корректно описать непрерывный переход от плотной квазинейтральной плазмы (с протекающими в ней электрическими токами) к движению в вакууме заряженных частиц (с сильно различающимися массами) с учетом генерируемых в промежутке неоднородных и нестационарных электрических полей [3–5]. Сделать это на базе гидродинамической модели плазмы удается лишь частично, пока в расчете не появляются разрывные решения или иные виды неустойчивого поведения. Более адекватным в рассматриваемой ситуации представляется применение методов физической кинетики заряженных частиц в сочетании с уравнениями Максвелла для самосогласованного электрического поля [6,7]. Далее кратко изложены результаты применения кинетического подхода к расчету электронного тока вакуумного диода с импульсным режимом генерации катодной плазмы, в котором естественным образом появляются эффекты как "виртуального катода", так и "горба потенциала".

В рамках простейшей (бесстолкновительной) кинетической модели двухкомпонентной плазмы (электроны и ионы одного сорта) с самосогласованным электрическим полем решалась нестационарная задача для следующей системы уравнений:

$$\frac{\partial f_e}{\partial t} + v \frac{\partial f_e}{\partial x} + \frac{e}{m} \frac{\partial \varphi}{\partial x} \frac{\partial f_e}{\partial v} = 0,$$
$$\frac{\partial f_i}{\partial t} + V \frac{\partial f_i}{\partial x} - \frac{e}{M} \frac{\partial \varphi}{\partial x} \frac{\partial f_i}{\partial V} = 0,$$
$$\varepsilon_0 \frac{\partial^2 \varphi}{\partial x^2} = -e \left(\int_{-\infty}^{\infty} f_i(x, V, t) dV - \int_{-\infty}^{\infty} f_e(x, v, t) dv \right).$$
(1)

Здесь e — элементарный заряд, m и M — массы электрона и иона соответственно, $\varphi(x, t)$ — электрический потенциал, v и V — скорости электронов и ионов в ансамблях с соответствующими функциями распределения по скоростям $f_e(x, v, t)$ и $f_i(x, V, t)$. Численные алгоритмы решения системы уравнений Власова (1), используемые в расчете и подробно описанные в работе [7], обеспечивают высокую степень достоверности.

Рис. 1. Временной профиль эмиссии катодной плазмы (*a*) и соответствующие его характерным точкам 1-2-4-5-6-1² мгновенные пространственные профили электрического потенциала (*b*) для 11-го импульса эмиссии плазмы (50–55 ns от начала разряда).

В начальный момент t = 0 вакуумный промежуток предполагался пустым, $f_e(x, v, 0) = f_i(x, V, 0) = 0$, но к нему приложено постоянное напряжение $\varphi(0, t) = 0$, $\varphi(D, t) = +U_0$. Инициирование вакуумного разряда задавалось "включением" неравновесной плазмы ($T_e \neq T_i$) в катодной плоскости x = 0 путем задания максвелловских функций распределения

$$f_e(0, v, t) = \chi(t) \frac{n_0}{\sqrt{2\pi m k T_e}} \exp\left(-\frac{mv^2}{2k T_e}\right),$$
$$f_i(0, V, t) = \chi(t) \frac{n_0}{\sqrt{2\pi M k T_i}} \exp\left(-\frac{MV^2}{2k T_i}\right), \qquad (2)$$

которые были модулированы во времени периодической ступенчатой функцией $\chi(t)$, показанной на рис. 1, *a*.

Далее проиллюстрированы результаты расчета системы (1) для следующих параметров задачи: длина промежутка D = 1 ст, приложенное напряжение $U_0 = 2$ kV, плазмообразующий металл — сурьма (M = 121 а.т.и.), концентрация катодной плазмы $n_0 = 10^{16}$ ст⁻³, температуры ансамблей в катодной плазме $T_e = 5$ eV, $T_i = 1$ eV. Модулирующая функция $\chi(t)$ имела период T = 5 пs, длительность переднего и заднего фронтов $t_{rise} = 0.1$ пs, длительность эмиссии $t_{width} = 2.9$ пs. Были протестированы и другие параметры задачи (D, n_0 , U_0 , параметры функции $\chi(t)$) в широком диапазоне, но качественно результаты были похожими.

Рис. 1 иллюстрирует пространственно-временную динамику электрического потенциала в течение одного периода функционирования катодной плазмы. Для примера выбран 11-й импульс эмиссии, начинающийся на 50-й наносекунде быстрым включением эмиссии, эмиссия продолжается до конца 53-й наносекунды и затем быстро выключается на 2 пѕ до конца 55-й наносекунды включительно. Для подробного анализа выбран 11-й импульс, поскольку к этому моменту граница плазмы уже заметно продвинулась, но еще довольно далека от анода.

Видно, что общий характер пространственного профиля потенциала не меняется в течение всего процесса, но сформированная на предыдущих стадиях разряда прикатодная плазма заряжается до положительного значения потенциала в паузе между импульсами эмиссии и до отрицательного значения, пока эмиссия имеет место. Именно в паузе между фазами эмиссии имеет место так называемый "горб потенциала" (кривые 5 и 6 на рис. 1, b), наличие которого уже долгое время является предметом бурных научных дискуссий среди специалистов по вакуумному разряду [1,2,8]. А в фазе, соответствующей ситуации, когда в катодной плоскости (x = 0) генерируется плотная плазма (в нашем расчете она имеет концентрацию 10^{16} cm⁻³), более разреженная плазма катодного факела приобретает отрицательное значение потенциала. Здесь имеет место типичное для вакуумного диода распределение потенциала типа "виртуальный катод". Именно формирование области инверсии направления электрического поля в плазме катодного факела обеспечивает монотонное ускорение ионов (и продвижение эмиссионной границы катодного факела со скоростью 2.6 · 10⁶ cm/s) в сторону анода как на стадиях эмиссии катодной плазмы, так и в паузах между ними. Механизм этого ускорения детально описан в нашей работе [7]. Отметим лишь, что скорость

Рис. 2. Фазовые портреты электронной функции распределения в разные моменты одного (11-го по счету от начала разряда) импульса эмиссии на катоде. Номера портретов соответствуют моментам времени на рис. 1, *а*.

продвижения фронта катодного факела u_f определяется самосогласованной кинетикой плазмы в нестационарном электрическом поле и может в несколько раз превышать ту, которая формально следует из формулы $u_f \approx \sqrt{2e|\Delta \varphi|/M}$, где $|\Delta \varphi| = 70-100 \text{ V}$ — примерная величина падения потенциала на плазме факела.

Более интересную информацию о механизме электронной эмиссии из плазмы прикатодного факела дают фазовые портреты электронного ансамбля. На рис. 2 показаны фазовые портреты электронной функции распределения для трех моментов времени: $t_2 = 50.1$ пs (момент включения новой порции катодной плазмы, прикатодная плазма приобретает отрицательный относительно катода потенциал -70 V), $t_4 = 53.0$ ns (завершение фазы активной эмиссии на катоде, потенциал дна виртуального катода -97 V), $t_6 = 53.4$ ns (пауза между импульсами эмиссии, прикатодная плазма заряжается до положительного потенциала +37 V, и вблизи катода формируется структура типа "горб потенциала").

Сразу после "включения" плазмы (50.1 ns) на фазовом портрете наблюдается инжекция порции электронов с повышенной энергией (до 70 eV), которые постепенно притормаживаются в поле виртуального катода и формируют к концу стадии эмиссии сильно разогретую (средняя энергия $\varepsilon_{VC} \sim 20 \,\text{eV}$) прикатодную плазму (53.0 ns). В паузе между стадиями эмиссии (53.4 ns) плазма катодного факела заряжается до положительного потенциала +37 V. "Горб потенциала" обеспечивает непрерывный перенос электрического тока в катодном сечении (x = 0) в паузах как ионами, так и обратными электронами. В плазме катодного факела средняя концентрация плазмы намного ниже, чем в катодной плазме $(n_0 = 10^{16} \,\mathrm{cm}^{-3})$, и монотонно спадает от $\sim 10^{15} \,\mathrm{cm}^{-3}$ вблизи катодного сечения до $\sim 10^{11}\,{
m cm^{-3}}$ на эмиссионной границе катодного факела.

На рис. З показана зависимость плотности тока вакуумного диода от времени, из которой видно, что ток "жестко" модулируется режимом эмиссии катодной плазмы. Обращает на себя внимание тот факт,

Рис. 3. Временной профиль электронного тока в вакуумном диоде. Штриховая линия соответствует расчетному току Чайлда—Ленгмюра.

что в фазе катодной эмиссии ток электронов имеет плотность существенно более высокую, чем чайлдленгмюровское значение, которое для зазора в 1 ст равно $(4\varepsilon_0/9)\sqrt{2e/m}U_0^{3/2}/D^2 \approx 0.21$ А/ст². Этого и следовало ожидать, так как плотная катодная плазма обеспечивает эффективную нейтрализацию пространственного заряда в сечении виртуального катода. В паузах между фазами катодной эмиссии величина плотности тока в диоде падает всего в несколько раз, так как высокая концентрация ионов в прикатодной области (~ 10^{15} cm⁻³) способна обеспечить этот уровень с запасом. По мере расширения катодного факела происходит монотонный рост первеанса диода за счет сокращения длины "бесплазменного" промежутка между эмиссионной границей факела и анодом (соответственно растет оценочный ток Чайлда—Ленгмюра, как показано на рис. 3). В паузах между фазами активной эмиссии плазмы на катоде формула Чайлда—Ленгмюра дает хорошее приближение для электронного тока в диоде, но в фазе активной эмиссии электронный ток в несколько раз превышает эту оценку.

Подводя итоги проведенного исследования, можно сделать следующие выводы.

1. Создана модель процесса формирования электронного пучка в вакуумном диоде с плазменным катодом, симулирующая бесстолкновительную физическую кинетику заряженных частиц в режиме пороговых токов.

2. Установлено, что плотность электронного тока в диоде с плазменным катодом может на порядок превышать плотность тока Чайлда—Ленгмюра при плотностях катодной плазмы на уровне $10^{16}-10^{15}$ сm⁻³ за счет эффективной нейтрализации пространственного заряда в области эмиссионной границы факела.

3. Показано, что при работе диода с плазменным катодом происходит радикальная трансформация продольного распределения электрического потенциала. В стадии активной катодной эмиссии реализуется режим виртуального катода, когда плазма катодного факела заряжается до отрицательного потенциала в десятки вольт, а в режиме паузы катодной эмиссии плазма факела быстро заряжается до положительного потенциала +(20-30) V и плавно снижается в пространстве до локального минимума на эмиссионной границе факела. Именно в паузе между фазами активной эмиссии внутри плазмы катодного факела формируется "горб потенциала".

4. В процессе расширения прикатодной плазмы внутри нее формируется область инверсии направления электрического поля, которая непрерывно обеспечивает ускорение ионов в сторону анода и движение эмиссионной границы катодного факела с характерными скоростями (2–5) · 10⁶ сm/s, экспериментально наблюдаемыми в вакуумных разрядах [1,2,8,9].

Финансирование работы

Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ по темам № FWRM-2021-0007, FWRM-2021-0014.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] G.A. Mesyats, *Cathode phenomena in a vacuum discharge:* the breakdown, the spark, and the arc (Nauka, M., 2000).
- [2] Vacuum arcs: theory and application, ed. by J.M. Lafferty (Wiley, N.Y., 1980).

- [3] M. Keidar, I. Beilis, Plasma Sources Sci. Technol., 8 (3), 376 (1999). DOI: 10.1088/0963-0252/8/3/306
- [4] Е.В. Нефедцев, А.В. Батраков, ЖЭТФ, 153 (4), 648 (2018). DOI: 10.7868/S0044451018040120 [Е.V. Nefedtsev, A.V. Batrakov, JETP, 126 (4), 541 (2018). DOI: 10.1134/S1063776118030159].
- [5] С.А. Баренгольц, Н.Ю. Казаринов, Г.А. Месяц, Э.А. Перельштейн, В.Ф. Шевцов, Письма в ЖТФ, **31** (4), 64 (2005). https://journals.ioffe.ru/articles/11495 [S.A. Barengol'ts, N.Yu. Kazarinov, G.A. Mesyats, É.A. Perel'shtein, V.F. Shevtsov, Tech. Phys. Lett., **31** (2), 164 (2005). DOI: 10.1134/1.1877636].
- [6] V.Yu. Kozhevnikov, A.V. Kozyrev, N.S. Semeniuk, IEEE Trans. Plasma Sci., 45 (10), 2762 (2017).
 DOI: 10.1109/TPS.2017.2726501
- [7] V.Yu. Kozhevnikov, A.V. Kozyrev, V.S. Igumnov, N.S. Semenyuk, A.O. Kokovin, Fluid Dyn., 58 (6), 1148 (2023). DOI: 10.1134/S0015462823601900
- [8] А.А. Плютто, В.Н. Рыжков, А.Т. Капин, ЖЭТФ, 47 (2), 494 (1965).
 [А.А. Plyutto, V.N. Ryzhkov, А.Т. Каріп, Sov. Phys. JETP, 20 (2), 328 (1965).

http://jetp.ras.ru/cgi-bin/e/index/e/20/2/p328?a=list].

[9] V.I. Krasov, V.L. Paperny, Plasma Phys. Rep., 43 (3), 298 (2017). DOI: 10.1134/S1063780X17030072