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Chaotic oscillations in a system of two coupled self-oscillators with

dedicated inertia
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Using the example of a generator model with dedicated inertia, a theoretical study of two coupled self-oscillators

with capacitive coupling, their sequential single-frequency synchronization, chaos and two-frequency synchronization

with an adiabatic change in the magnitude of the coupling between partial self-oscillators was carried out. The

parameters of self-oscillators and the values of the coupling coefficient at which the specified operating modes

of coupled self-oscillators exist are determined. The results of numerical studies, illustrating the conditions for

excitation of single-frequency, chaotic and dual-frequency oscillations in a system of coupled self-oscillators are

presented.
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Chaotic oscillation regimes of systems of coupled self-

oscillators have been examined in a number of studies (see,
e.g., [1,2]). They have always attracted research attention

due both to the great variety of oscillatory processes

and to the quality of generated chaotic oscillations (see,
e.g., [3–9]).

Coupled systems allowing for chaotic dynamics of par-

tial self-oscillators are of particular interest, since they

feature the largest set of oscillatory regimes, which in-

cludes both regular and chaotic oscillations with multi-

frequency dynamics [3,4]. However, the authors of

the overwhelming majority of studies focused their

attention on systems of coupled self-oscillators with

vastly different natural frequencies and control parame-

ters and introduced additional elements and external sig-

nals to facilitate the generation of chaos in these sys-

tems.

Specifically, the influence of a low-pass filter, which

alters the phase of common oscillations to expand the

region of chaos on the plane of control parameters, on

synchronization of chaotic oscillations of a pair of unidirec-

tionally coupled generators of a chaotic signal was examined

in [5,6].

A system of coupled Kislov−Dmitriev self-oscillators

with non-identical control parameters was studied in [7,8],
and it was noted that the primary scenario of oscillations in

transition to chaos is the destruction of the quasi-periodic

regime.

The synchronization of chaotic oscillations in a system

of two mutually coupled non-identical Rössler oscillators

in the helical chaos regime was investigated in [9]. The

fundamental role played by the difference in parameters

of partial self-oscillators in the transition to well-developed

chaotic oscillations was noted.

It follows from this brief review that systems of coupled

self-oscillators with equal partial frequencies of compo-

nents remain virtually unstudied. Thus, it is of interest

to determine which oscillation regimes may be inherent

in systems of two coupled self-oscillators with identical

partial frequencies and identify the possible scenario of

development of an oscillatory process in such a system in

transition to chaos.

In the present study, we report the results of numerical

analysis of a system of two coupled self-oscillators with

dedicated inertia and practical equality of partial frequencies.

A mathematical model of a generator with dedicated

inertia (GDI) was proposed in [10]. This model is

noteworthy for the fact that it characterizes adequately

the dynamics of an amplifier stage with a high-power

bipolar transistor in large-signal operation. The param-

eters of the generator model correspond to the actual

parameters of systems based on high-power transistors

and may be used in calculation of real circuit designs

(see [11,12]). Chaotic oscillations of such systems

have a near-normal probability density distribution and

a wide frequency range, which provides an opportunity

to solve real-world problems on construction of chaos

generators with a high energy potential. Therefore,

a system of coupled GDIs may be regarded as the

most instructive prototype model for studying the com-

plex dynamics of coupled oscillators with close frequen-

cies.

Relying on the results from [10], one may present the

system of equations of two coupled self-oscillators with

dedicated inertia and capacitive coupling in the following
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Figure 1. Dynamics of the oscillatory process of a system of two coupled GDIs with variation of the coupling coefficient between partial

oscillators: k = 0.1 (a), 0.42 (b), 0.53 (c) and 0.61 (d).

form:

Ẋi = Yi + (m1i − m2i)Xi − Xi Zi + kX j, Xi ≤ qi ,

Ẋi = Yi − m2i Xi − qi Zi , Xi > qi ,

Ẏi = −Xi,

Żi = −g iZi + g iFi(2Xi − m2iWi)(2Xi − m2iWi)
2,

Fi(a) =







1, a ≥ 0,

0, a < 0,

Ẇi = Xi − m2iWi , (1)

where i , j = 1, 2; i 6= j ; k is the coupling coefficient; X ,

Y , Z, and W are the dimensionless voltage at the nonlinear

amplifier input, current in the feedback circuit, voltage at

the output of a half-wave inertial converter, and current in

the input circuit, respectively; m1, m2, q, and g are the

excitation, dissipation, limit, and inertia parameters; and

F(a) is the Heaviside step function.

System (1) was solved with a slight detuning in inertia

parameters g1 = 0.045, g2 = 0.05 and equal values of the

remaining parameters of partial self-oscillators, which cor-

responded to the values used in [10]: m1 = 1.6, m2 = 0.2,

and q = 1. The condition of equality of partial frequencies

was thus satisfied.

Figure 1 presents spectral patterns that allow one to track

the development of an oscillatory process in system (1)
under variation of coupling parameter k . With an initially

weak coupling (k = 0.1), periodic motion (5) is established
in the system in the form of a stable limit cycle based

on frequency f 0 equal to the frequency of autonomous

oscillations of partial self-oscillators (Fig. 1, a).

The periodic motion regime persists in the system until

the coupling coefficient reaches the level of k = 0.4; in this

context, an enhancement of coupling induces an interchange

of periodic motion regimes of different multiplicity. At

k = 0.4, a complex oscillatory process starts to develop

in the system, which eventually leads to the emergence of

chaotic oscillations based on frequency f 0 (Fig. 1, b).

Further variation of parameter k results in transition

from the regime of a strange attractor based on a single

frequency (SA1) to the regime of generation of chaotic

oscillations based on dual-frequency motion (SA2), which

is manifested in the spectral domain as a double-humped

spectral characteristic of variable X1 (Fig. 1, c). The next

stage of evolution of oscillation regimes is presented in

Fig. 1, d. When the level of k = 0.56 is exceeded, the SA2

regime gives way to dual-mode regular motion (T2) based

on frequencies f 1 and f 2, f 1 < f 0 < f 2. An increase in

the coupling coefficient leads to structural rearrangements
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Figure 2. Time realizations of X1 corresponding to oscillations

of a system of coupled GDIs at k = 0.42 (SA1) (a) and k = 0.56

(SA2) (b).

of resonant tori in the phase space of the system; notably, a

larger coupling coefficient corresponds to a smaller number

of spectral components in the oscillation power spectrum

of the system. The dual-frequency system dynamics

is indicative of the emergence of additional regions of

synchronization in the system of coupled GDIs at high

coupling coefficient values.

Let us examine the time realizations of oscillations to

analyze the processes proceeding in the system under study.

The variation of X1 for SA1 and SA2 is presented in Figs. 2, a

and b, respectively. These data offer the most insight into

the mechanism of the SA1−SA2 transition.

The case of SA1 is characterized by irregular intermit-

tency of trains of oscillations of different periods. An

increase in coupling parameter k leads to a sequential

change of states of the system in the form of stable limit

cycles with their oscillation periods increasing gradually

by unity. The system of coupled GDIs demonstrated

additive growth of the oscillation period multiplicity in unit

steps in the transition from stable periodic motion with

a period of n/ f 0 to periodic motion (n + 1)/ f 0, where

n = 1, 2, . . .. With each subsequent transition to a stable

cycle with a unit increase in the oscillation period, the

distance between the critical values of variable parameter k
decreased. In the numerical experiment, the maximum

value is n = 5 at k = 0.39.

In the dual-frequency chaotic SA2 regime, a competition

of interacting modes is observed, which is manifested in the

fact that oscillations with frequencies f 1 and f 2 alternate

chaotically in the system (Fig. 2, b). Frequency components

of partial self-oscillators do not compete in the case under

consideration; it is the system modes that are competing,

and the examined system of coupled self-oscillators acts

as a unified system with its unique properties. Additional

synchronization regions are established in the system of

equivalent self-oscillators, which is manifested in the dual-

frequency oscillation regime.

The probability density distribution was calculated to

reveal the statistical properties of chaotic oscillations in the

SA2 regime. The calculation of the histogram showed that

the probability density distribution of oscillations is close to

a normal Gaussian one at k = 0.53.

The scenario of development of oscillations on exit from

the SA2 regime is a sequential change of the number of com-

bination components with the ( f 2 − f 1)/h arrangement,

where h = 4, 3, 2; i.e., the transition from dual-frequency

chaos to the resonant tori regime was characterized by

a sequential reduction in the number of combination

components with an increase in coupling coefficient k in

accordance with the law inverse to the natural series.

Thus, the numerical experiment revealed the emergence

of secondary nonlinear resonances and chaotization of

oscillations in the system of coupled GDIs as a result of

transition from the single-frequency interaction to the dual-

frequency one. The examined 5−SA1−SA2−T2 oscilla-

tion scenario demonstrates that the transition to chaotic

oscillations in the studied system of coupled GDIs with

practically equal partial frequencies is accompanied by

mode competition and intermittency. The dynamics of the

system is characterized by a pattern typical of pulling and

switching of modes in the chaos region, which manifests

itself as a transition from a regime based on single-frequency

oscillations to a regime based on dual-frequency oscillations.
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