Поиск широких атмосферных ливней с аномальной пространственно-временной структурой по данным установки **Tunka-Grande**

- © А.Л. Иванова,^{1,2} И.И. Астапов,³ П.А. Безъязыков,² Е.А. Бонвеч,⁴ А. Блинов,⁵ А.Н. Бородин,⁵ Н.М. Буднев,² А.В. Булан,⁴ П.В. Бусыгин,² П.В. Волков,⁶ П.А. Волчугов,^{4,2} Д.М. Воронин,⁷ А.Р. Гафаров,² А.Ю. Гармаш,^{1,8}

 - В.М. Гребенюк,^{5,9} О.А. Гресь,² Т.И. Гресь,² Е.О. Гресь,² А.А. Гринюк,⁵ О.Г. Гришин,² А.Н. Дячок,² В.А. Ерофеева,² Д.П. Журов,² А.В. Загородников,² В. Зиракашвили,¹⁰ А.Д. Иванова,^{2,11} М.А. Илюшин,²
 - И.А. Кабанник,¹ Н.Н. Калмыков,⁴ В.В. Киндин,³ С.Н. Кирюхин,² В.А. Кожин,⁴ Р.П. Кокоулин,³
 - К.Г. Компаниец,³ Е.Е. Коростелева,⁴ Е.А. Кравченко,^{1,8} А.П. Крюков,⁴ Л.А. Кузьмичев,⁴ А. Кьявасса,¹²
 - М.В. Лаврова,⁵ А.А. Лагутин,⁶ Ю.Е. Лемешев,² Б.К. Лубсандоржиев,⁷ Н.Б. Лубсандоржиев,^{2,4} А. Луканов,⁷
 - С.Д. Малахов,² Р.Р. Миргазов,² Р.Д. Монхоев,^{1,2} Э.А. Окунева,^{2,4} Э.А. Осипова,⁴ А. Пан,⁵ А.Д. Панов,⁴
 - Л.В. Паньков,² А.Л. Пахоруков,² А.А. Петрухин,³ Д.А. Подгрудков,⁴ И. Поддубный,² Е.Г. Попова,⁴
 - Е.Б. Постников,⁴ В.В. Просин,⁴ А.А. Пушнин,² Р.И. Райкин,⁶ А.В. Разумов,^{2,4} Г.И. Рубцов,⁷ Е.В. Рябов,²
 - А.К. Сагдеева,² И. Сатышев,⁵ В.С. Самолига,² Л.Г. Свешникова,⁴ А.Ю. Сидоренков,⁷ А.А. Силаев,⁴
 - А.А. Силаев (мл.),⁴ А.В. Скурихин,⁴ А.В. Соколов,^{1,8} В.А. Таболенко,² А.Б. Танаев,² М.Ю. Терновой,²
 - Л.Г. Ткачев,^{5,9} Н.А. Ушаков,⁷ Д.В. Чернов,⁴ А.. Шайковский,⁵ И.И. Яшин³

¹ Новосибирский государственный университет,

630090 Новосибирск, Россия

² Иркутский государственный университет,

664003 Иркутск, Россия

³ Национальный исследовательский ядерный университет "МИФИ",

105043 Москва, Россия

⁴ Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына,

Московского государственного университета им. М.В. Ломоносова,

119991 Москва, Россия

⁵ Объединенный институт ядерных исследований,

141980 Дубна, Московская обл., Россия

⁶ Алтайский государственный университет,

656049 Барнаул, Россия

7 Институт ядерных исследований РАН,

117312 Москва, Россия

⁸ Институт ядерной физики им. Г.И. Будкера СО РАН,

630090 Новосибирск, Россия

⁹ Государственный университет "Дубна",

141982 Дубна, Московская обл., Россия

¹⁰ Институт Земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН,

142191 Троицк, Москва, Россия

¹¹ Московский физико-технический институт (национальный исследовательский университет),

141701 Долгопрудный, Московская обл., Россия

¹² Dipartimento di Fisica Generale Universiteta di Torino and INFN,

Torino, Italy

e-mail: annaiv.86@mail.ru

Поступило в Редакцию 27 апреля 2024 г. В окончательной редакции 27 апреля 2024 г. Принято к публикации 30 октября 2024 г.

> Изучена пространственно-временная структура широких атмосферных ливней по данным сцинтилляционной установки Tunka-Grande. Представлены результаты анализа временных разверток сигналов от широких атмосферных ливней с энергией выше 10 PeV.

Ключевые слова: широкие атмосферные ливни, установка Tunka-Grande, многоимпульсный сигнал.

DOI: 10.61011/JTF.2024.12.59243.339-24

Введение

Одним из актуальных направлений исследований на установках для регистрации компонент широких атмосферных ливней (ШАЛ) является изучение событий со сложной пространственно-временной структурой [1-4]. Интерес связан с поиском ШАЛ с несколькими фронтами, отстоящими друг от друга на десятки и сотни наносекунд, а также с поиском частиц, запаздывающих относительно фронта ливня, либо опережающих его [3]. Поиск подобных событий ведется путем исследования формы сигналов ШАЛ, зарегистрированных в детекторах установки.

В 2023 г. был начат поиск ШАЛ со сложной структурой по данным сцинтилляционной установки Tunka-Grande. Установка Tunka-Grande представляет собой 19 станций наблюдения, распределенных на площади 0.5 km². Каждая станция включает в себя наземный детектор заряженной компоненты ШАЛ общей площадью $\sim 8 \, {\rm m}^2$ и подземный мюонный детектор общей площадью $\sim 5 \, {\rm m}^2$. Подробное описание установки Tunka-Grande представляено в [5]. Ниже приведены результаты анализа данных, набранных за $\sim 360 \, h$ работы установки.

1. Сигналы ШАЛ со сложной структурой по данным Tunka-Grande

За ~ 360 h работы сцинтилляционная установка Tunka-Grande зарегистрировала порядка 72 100 событий, в которых в каждой половине трех и более наземных детекторов наблюдались сигналы с амплитудой, превышающей уровень 0.5 амплитуды от одной частицы. В большинстве случаев зарегистрированные импульсы имели стандартную форму с одним пиком, ровным нарастанием и спадом фронта (рис. 1). Однако наблюдались и импульсы "многомодальной" формы, имеющие двух- и многопиковую структуру (рис. 1). Также были обнаружены многоимпульсные сигналы, когда на временной развертке кроме импульса ШАЛ наблюдались отдельные запаздывающие или опережающие импульсы (рис. 1). При этом основные импульсы ШАЛ и запаздывающие импульсы встречались как стандартной, так и "многомодальной" формы.

В качестве основных гипотез, объясняющих наличие многопиковых структур на временных развертках сигналов, зарегистрированных в детекторах Tunka-Grande, были выдвинуты следующие: 1) "многомодальные" импульсы отражают пространственно-временную структуру ШАЛ и связаны с ростом толщины ливневого диска с увеличением расстояния от оси ШАЛ; 2) опережающие импульсы в многоимпульсных сигналах вызваны одиночными атмосферными мюонами, попавшими в детекторы несколько раньше частиц ШАЛ; 3) вклады в запаздывающие импульсы в многоимпульсных сигналах дают послеимпульсы ФЭУ, одиночные мюоны и запаздывающие частицы ШАЛ.

2. Временные и амплитудные распределения сигналов

Для анализа были отобраны ~ 26 500 временных разверток сигналов в наземных детекторах установки, где кроме основного импульса ШАЛ с амплитудой не менее 0.5 от уровня одной частицы имелись дополнительные импульсы, удовлетворяющие аналогичному условию на амплитуду. В подземных детекторах было обнаружено ~ 3400 подобных сигналов.

Длина развертки позволяла наблюдать временное распределение сигнала в интервале 5 μ s. Основной импульс ШАЛ в наземных детекторах наблюдался с задержкой 1.5 μ s относительно начала записи. Из-за временных задержек, связанных с подлетом мюонов к подземным детекторам и передачей сигналов по кабелям большей длины, импульсы от мюонов ШАЛ, зарегистрированные в подземных детекторах, в среднем запаздывали относительно импульсов заряженных частиц ШАЛ в наземных детекторах на время порядка 35 пs.

На рис. 2 представлены амплитудные и временные распределения импульсов в многоимпульсных сигналах, зарегистрированных в наземных детекторах. Опережающие импульсы составляют около 3% от общего числа дополнительных импульсов и распределены равномерно от начала записи временной развертки до основного импульса ШАЛ (рис. 2, *a*). В большинстве случаев запаздывающие импульсы смещены относительно основных импульсов ШАЛ на ~ 300 ns (рис. 2, *a*). Наиболее вероятное значение амплитуды основных импульсов ШАЛ и опережающих импульсов соответствует амплитуде импульса от одной частицы (рис. 2, *b*).

Аналогичная картина наблюдается и в подземных детекторах.

3. Обсуждение природы "многомодальных" импульсов и многоимпульсных сигналов ШАЛ

На рис. 3, *а* показано интегральное распределение ~ 72 100 зарегистрированных ШАЛ в зависимости от числа сработавших станций, в которых в наземном детекторе наблюдались "многомодальные" импульсы/многоимпульсные сигналы (диаграмма светло-серого цвета), либо только многоимпульсные сигналы (темносерая диаграмма).

Анализ статистики по отдельным станциям показал, что в наземных детекторах опережающие импульсы наблюдаются в среднем в ~ 0.29% случаев, в подземных в ~ 0.05% случаев. Запаздывающие импульсы наблюдаются в наземных детекторах в ~ 9.89% случаев, в подземных — в ~ 1.55% случаев. Зная темп счета одиночных атмосферных мюонов, можно вычислить вероятность попадания ШАЛ и одиночного мюона в детектор в пределах временного окна 1.5 µs для опережающих импульсов и 3.5 ns для запаздывающих. Расчеты показали, что в первом случае (опережающие импульсы) попадание одиночного мюона и частиц ШАЛ в наземный детектор должно наблюдаться в $\sim 0.3\%$ событий, в подземный — в ~ 0.09% событий. Во втором случае (запаздывающие импульсы) в наземный в $\sim 0.63\%$ случаев, в подземный — в ~ 0.21% случаев. Можно заключить, что близкий по времени прилет одиночных мюонов и частиц

Рис. 1. Формы сигналов в экспериментальных данных (time code = 5 ns, amplitude code = 1.5 mV).

Рис. 2. Распределение импульсов в наземных детекторах: a — в зависимости от времени начала импульса, b — по амплитуде. Амплитуда импульса от одной частицы $A_1 = 30$ codes, графики демонстрируют распределения импульсов с амплитудой не менее $A_{\text{threshold}} = 0.5A_1$.

ШАЛ в детектор позволяет объяснить опережающие импульсы, но подобных событий недостаточно, чтобы

обеспечить наблюдаемую статистику по запаздывающим импульсам.

Рис. 3. *а* — распределение событий ШАЛ в зависимости от числа сработавших станций с многоимпульсными сигналами и "многомодальными" импульсами в наземной части; *b* — распределение сработавших станций в зависимости от расстояния до оси ШАЛ.

Предположение, что запаздывающие импульсы являются после-импульсами ФЭУ не может объяснить обнаруженную зависимость наличия запаздывающих импульсов в станции от ее положения относительно оси ШАЛ. Из рис. 3, b видно, что "многомодальные" импульсы и многоимпульсные сигналы ШАЛ наиболее вероятно наблюдались в станциях, оказавшихся на расстояниях 200 m и более от оси ливня. Можно заключить, что импульсы ШАЛ "многомодальной" формы и запаздывающие импульсы связаны с пространственно-временной структурой ШАЛ и отражают рост толщины ливневого диска с ростом расстояния от оси ШАЛ.

Заключение

Форма "многомодальных" импульсов отражает особенности распространения частиц на больших расстояниях от оси ливня. Времена запаздывания частиц относительно переднего фронта ШАЛ растут с увеличением расстояния от оси ливня. В случае если детектор расположен на расстоянии 200 m и более от оси ШАЛ, попадающие в него запаздывающие частицы дают дополнительные пики в регистрируемом сигнале.

Обнаруженные на временных развертках опережающие импульсы вызваны одиночными атмосферными мюонами, попавшими в детектор вместе с частицами ШАЛ. Это подтверждается согласующимися результатами расчетов и эксперимента. Однозначного объяснения природы запаздывающих импульсов нет. Полагаем, что кроме после-импульсов ФЭУ и одиночных мюонов значительный вклад в них вносят запаздывающие частицы ШАЛ. Вопрос природы запаздывающих импульсов остается открытым и требует дальнейшего изучения.

Финансирование работы

Работа выполнена на базе УНУ "Астрофизический комплекс МГУ-ИГУ". Исследование поддержано Российским научным фондом (проект 23-72-00016 (раздел 3), 23-72-00054 (раздел 4)) и Министерством науки и высшего образования Российской Федерации (проекты FZZE-2024-0005, FZZE-2023-0004, FSUS-2022-0015).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Г.К. Гарипов. Поиск особенностей ШАЛ при регистрации запаздывающих частиц и мюонов на установке ШАЛ МГУ (ВМУ, 2022) сер. 3, № 1, с. 80–89.
- [2] R. Beisembaev, D. Beznosko, E. Beisembaeva, O.D. Dalkarov, V. Mossunov, V. Ryabov, S. Shaulov, M. Vildanova, V. Zhukov, K. Baigarin, T. Sadykov. PoS (ICRC2019), 358, 195 (2019). DOI: 10.22323/1.358.0195
- [3] Г.К. Гарипов, А.А. Силаев. Ядерная физика, 83 (3), 235 (2020).
- [4] R. Mayta, Y. Tsunesada, S. Ogio. For the Telescope Array Collaboration. PoS (ICRC2019), 358, 347 (2019). DOI: 10.22323/1.358.0347
- [5] Р.Д. Монхоев. Письма в ЭЧАЯ, 20 (5 (250)), 1117 (2023).