Отрицательно заряженные азотно-вакансионные центры в кристалле карбида кремния 6*H*-²⁸SiC

© Ф.Ф. Мурзаханов¹, Г.В. Мамин¹, М.А. Садовникова¹, Д.В. Шуртакова¹, О.П. Казарова², М.Р. Гафуров¹

¹ Институт физики, Казанский (Приволжский) федеральный университет,

420008 Казань, Россия

² Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

E-mail: murzakhanov.fadis@yandex.ru

Поступила в Редакцию 19 апреля 2024 г. В окончательной редакции 14 августа 2024 г. Принята к публикации 30 октября 2024 г.

Техниками высокочастотного электронного парамагнитного резонанса идентифицированы высокоспиновые (S = 1) центры окраски в изотопно-модифицированном кристалле $6H^{-28}$ SiC. Определены компоненты спинового гамильтониана (g, D, A) отрицательно заряженных азотно-вакансионных (NV^-) центров и изучено влияние режимов оптического возбуждения на их релаксационные характеристики. Полученные результаты доказывают потенциальную возможность использования NV^- -дефектов в $6H^{-28}$ SiC для материальной реализации кубитов и спин-фотонных интерфейсов.

Ключевые слова: спиновые дефекты, карбид кремния, оптическая поляризация.

DOI: 10.61011/FTP.2024.09.59307.6309A

1. Введение

Квантово-механическая теория навсегда изменила классический взгляд на, казалось бы, привычный и хорошо изученный мир, представив интерпретацию физических явлений и наблюдений в принципиально новом виде. По прошествии более одного столетия с момента ее зарождения квантовая механика вновь дает исследователям надежду на прорыв, на этот раз вычислительного тупика, связанного с достижением предела в производительной мощности современных компьютеров [1]. Предполагается, что развитие квантовых технологий уже через короткое время позволит решить ряд междисциплинарных проблем и задач, непосильных классическим аналогам [1,2].

Материальная база квантовых процессоров может быть представлена в виде набора кубитов в структурнозащищенной матрице, являющихся основой для организации квантовых симуляторов [2]. Из всего многообразия физических реализаций кубитов особо выделяющимися кандидатами являются дефекты в широкозонных полупроводниковых кристаллах, обладающие высокоспиновым состоянием и спектрами оптического поглощения и излучения в видимом и инфракрасном (ИК) диапазонах [3,4]. Эффективное взаимодействие оптического кванта возбуждения и электронного состояния дефекта делает центр окраски привлекательным объектом для создания спин-фотонных интерфейсов, способных работать при комнатной температуре вместе с существующей оптоэлектронной техникой. Кристалл карбида кремния (SiC) может служить матрицей-хозяином для большого семейства центров окраски, являясь полупроводником с широким спектром применения [5,6].

2. Материал

В данной работе исследованы кристаллы 6*H*-SiC с изотопным обогащением ядрами ²⁸Si (ядерный спин I = 0), выращенные путем высокотемпературной сублимации из газовой фазы в твердую [7]. Концентрация азота в кристалле 6*H*-²⁸SiC составляла $C \approx 10^{17}$ см⁻³. Образцы 6*H*-²⁸SiC были облучены электронами с энергией 2 МэВ и дозой $4 \cdot 10^{18}$ см⁻², после чего отжигались при температуре $T = 900^{\circ}$ С в атмосфере аргона в течение 2 ч.

3. Методика эксперимента

Образцы изучены методом высокочастотного (94 ГГц, W-диапазон) электронного парамагнитного резонанса (ЭПР) с использованием спектрометра Bruker Elexsys E680. Необратимый распад электронного спинового эха (ЭСЭ) был получен с помощью последовательности Хана ($\pi/2-\tau-\pi-\tau-\Im)$ СЭ) с длительностью импульсов $\pi/2 = 40$ нс, $\pi = 80$ нс и межимпульсным интервалом $\tau = 1.2$ мкс. Время поперечной релаксации (T_2) получено при фиксированном B_0 и увеличении интервала τ с шагом 64 нс. Использованы непрерывные твердотельные лазеры с $\lambda = 980$ и 1064 нм с выходной мощностью *P* до 500 мВт.

4. Обсуждение результатов

Без облучения светом в широком температурном диапазоне (297–50 K) сигнал ЭПР в образцах был меньше чувствительности спектрометра. При включении лазера наблюдаются спектры ЭПР исследуемых центров

Рис. 1. a — спектры ЭПР (980 нм) в стационарном (вверху) и импульсном (внизу) режимах при $c \parallel B_0$. На вставке показаны спиновые уровни дефекта с S = 1 под действием оптического возбуждения; b — низкополевая компонента тонкой структуры NV^- -центра в импульсном режиме (зеленая линия — эксперимент (980 нм), синяя линия — симуляция с параметрами спинового гамильтониана, приведенными в тексте статьи), выделенная прямоугольником на рис. 1, a. "Темновой" сигнал представлен фиолетовым цветом; c — модель дефекта NV^- -центра в кристаллической решетке 6*H*-SiC. (Цветной вариант рисунка представлен в электронной версии статьи).

окраски в кристалле $6H^{-28}$ SiC (рис. 1, *a* и *b*), состоящие из резонансных поглощений дефектов различной природы. Интересующие компоненты выделены прямоугольниками (рис. 1, *a*), которые связаны с отрицательно заряженными NV^- -центрами с электронным спином S = 1. Тонкая структура с центром тяжести спектра при g = 2.003 (спиновая природа магнетизма) вызвана расщеплением спиновых подуровней в нулевом магнитном поле величиной $D \approx 1.3 \Gamma \Gamma ц$ из-за спин-спинового взаимодействия [8]. Оптическое возбуждение приводит к преимущественному заселению состояния с $M_S = 0$ (см. вставку на рис. 1, *a*), образуя тем самым инверсию населенности и сигнал микроволнового излучения (высокополевая компонента). Учитывая отсутствие сигнала ЭПР в кристаллах без светового воздействия, можно предположить, что степень поляризации электронной системы близка к 100%, необходимая для стадии "инициализации" квантовых компьютеров. На рис. 1, *b* показана детально зарегистрированная низкополевая компонента тонкой структуры, состоящая из трех вкладов из-за наличия структурно-неэквивалентных позиций NV^- -центра (k_1k_2, hh, k_2k_1) в $6H^{-28}$ SiC (рис. 1, *c*).

Небольшое различие в микроструктуре и распределении спиновой плотности дефектов сказывается на величине D, что дает возможность селективного возбуждения каждого центра окраски. Таким образом, в $6H^{-28}$ SiC в электронной подсистеме присутствуют три независимых кубита, возбуждаемых на трех разных частотах.

Рис. 2. Кривые распада поперечной намагниченности NV^- центра в полулогарифмическом масштабе при T = 150 K под действием оптического возбуждения с мощностью 500 мВт (синие и серые цвета) и 125 мВт (красные и зеленые цвета) для длин волн 980 (синие и зеленые линии) и 1064 нм (серые и красные линии). (Цветной вариант рисунка представлен в электронной версии статьи).

Расстояние между центрами NV_{k1k2} и NV_{k2k1} составляет 70 МГц, что позволяет использовать стандартные радиочастотные генераторы для квантовых манипуляций ядерной подсистемой или СВЧ генераторы для манипуляций электронными кубитами. Наличие магнитного ядра ¹⁴N со спином I = 1 вблизи вакансии кремния приводит к образованию дополнительного сверхтонкого расщепления (2I + 1) каждой компоненты тонкой структуры на три равноудаленные линии величиной порядка $A_{zz} = 1.1$ МГц. Когерентная электрон-ядерная связь обеспечивает дополнительную степень свободы при проведении экспериментов с многоимпульсными последовательностями [9,10] и потенциальную реализуемость квантовых алгоритмов/операций на основе данных спиновых дефектов [11].

Важным свойством квантовых компьютеров является обратимость действия квантовых "гейтов". Простейшим явлением для наблюдения обратимости в спиновых системах является электронное спиновое эхо [11]. Метод заключается в регистрации электронного спинового эха при прикладывании микроволновых импульсов заданной длительности с возможностью инвертирования процессов распада спиновой намагниченности изза неоднородного распределения локальных магнитных полей. С увеличением межимпульсного интервала в последовательности Хана создаются временные границы, в пределах которых потеря спиновой когерентности из-за необратимого спин-спинового взаимодействия становится существенной. Таким образом, время жизни кубитов, реализованных на спиновых дефектах, определяется необратимыми процессами спин-спиновой релаксации, в отличие от обратимых по времени процессов (взаимодействие с неоднородным распределением локальных магнитных полей) T_2^* . Аппроксимация этих зависимостей экспоненциальным законом позволяет получить время фазовой когерентности спинового пакета, являющееся одной из важных характеристик любого кубита (рис. 2). Поляризация состояния $M_S = 0$ связана с квантовыми переходами под действием лазерного излучения с трех основных уровней $M_S = -1, 0, +1$ на один из трех $M_S = 0$ через несколько промежуточных уровней. Если рассматривать одиночный NV⁻-центр, то такие переходы приведут или к полному восстановлению продольной намагниченности, для случая возбуждения через зону проводимости, или к сдвигу фазы прецессии за счет ненулевого времени жизни состояний на возбужденных уровнях, в случае возбуждения через уровни изолированных дефектов. Переходя к ансамблю спинов, в среднем такие процессы будут вызывать дополнительную декогеренцию спинового пакета и, следовательно, уменьшение времени спин-спиновой релаксации. Так как количество таких переходов связано с количеством оптических квантов (мощностью оптической накачки) и энергии одного кванта, нами было проведено исследование распада поперечной намагниченности от мощности и длины волны лазера. Кроме того, это будет оказывать влияние и на вероятность такого перехода, которая зависит от интенсивности линии поглощения на длине волны лазера, связанной с NV⁻-центрами. Лазерное излучение подавалось через световод в непрерывном режиме, а для уменьшения мощности использовалась несинхронизированная с последовательностью СВЧ импульсов широтно-импульсная модуляция с периодом 10 мкс. Таким образом, при накоплении сигнала 8192 раз был получен усредненный распад поперечной ансамблевой намагниченности. На рис. 2 показаны кривые релаксации спинового дефекта под действием непрерывного излучения с длинами волн 980/1064 нм и мощностью 125/500 мВт. Обнаружено, что влияние зависимости частоты излучения минимально.

Дополнительные измерения были проведены при ослаблении мощности оптического излучения до 125 мВт с помощью широтно-импульсной модуляции лазера. При изменении средней мощности лазера в 4 раза произошло двукратное удлинение времени фазовой когерентности. Данный факт указывает на то, что мощность лазера в 125 мВт близка к оптимальной (на рис. 2, зеленый цвет), и необратимый распад фазовой когерентности вызывается спин-спиновой релаксацией и спиновой диффузией, которая в свою очередь проявляется как отклонение от прямой [12]. При оптимальных условиях (T = 150 K, 980 нм, 125 мВт) время поперечной релаксации для ансамбля частиц с $C_N \approx 10^{17} \, {\rm cm}^{-3}$ составляет $T_2 = 60$ мкс, что уже больше, чем для ранее изученных дефектов при более низкой температуре кристалла (вакансия бора в *hBN* — 15 мкс [4] и дивакансии в 4*H*-SiC — 40 мкс [5] при T = 7 K).

5. Заключение

Таким образом, результаты, полученные в данной работе методом фотоиндуцированного ЭПР, показывают, что NV^- -центр в 6 H^{-28} SiC является многообещающей платформой для реализации квантово-информационных технологий на основе спин-фотонных взаимодействий.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O'Brien. Nature, 464 (7285), 45 (2010). DOI: 10.1038/nature08812
- J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G. Van de Walle, D.D. Awschalom. Proc. Natl. Acad. Sci., 107 (19), 8513 (2010). DOI: 10.1073/pnas.1003052107
- [3] F.J. Heremans, C.G. Yale, D.D. Awschalom. Proc. IEEE, 104 (10), 2009 (2016). DOI: 10.1109/JPROC.2016.2561274
- [4] F.F. Murzakhanov, G.V. Mamin, S.B. Orlinskii, U. Gerstmann,
 W.G. Schmidt, T. Biktagirov, I. Aharonovich, A. Gottscholl,
 A. Sperlich, V. Dyakonov, V.A. Soltamov. Nano Lett., 22 (7),
 2718 (2022). DOI: 10.1021/acs.nanolett.1c04610
- [5] F.F. Murzakhanov, B.V. Yavkin, G.V. Mamin, S.B. Orlinskii, H.J. von Bardeleben, T. Biktagirov, U. Gerstmann, V.A. Soltamov. Phys. Rev. B, **103** (24), 245203 (2021). DOI: 10.1103/PhysRevB.103.245203
- [6] H.J. von Bardeleben, J.L. Cantin, A. Csóré, A. Gali, E. Rauls, U. Gerstmann. Phys. Rev. B, 94 (12), 121202 (2016).
 DOI: 10.1103/PhysRevB.94.121202
- [7] V.A. Soltamov, C. Kasper, A.V. Poshakinskiy, A.N. Anisimov, E.N. Mokhov, A. Sperlich, S.A. Tarasenko, P.G. Baranov, G.V. Astakhov, V. Dyakonov. Nature Commun., 10 (1), 1678 (2019). DOI: 10.1038/s41467-019-09429-x
- [8] K. Khazen, H.J. Von Bardeleben, S.A. Zargaleh, J.L. Cantin, M. Zhao, W. Gao, T. Biktagirov, U. Gerstmann. Phys. Rev. B, 100 (20), 205202 (2019).
 DOI: 10.1103/PhysRevB.100.205202
- [9] F.F. Murzakhanov, M.A. Sadovnikova, G.V. Mamin, S.S. Nagalyuk, H.J. von Bardeleben, Schmidt, W.G., T. Biktagirov, U. Gerstmann, V.A. Soltamov. J. Appl. Phys., 134 (12), 123906 (2023). DOI: 10.1063/5.0170099
- [10] F. Murzakhanov, M. Sadovnikova, G. Mamin, K. Sannikov, A. Shakirov, H.J. von Bardeleben, E. Mokhov, S. Nagalyuk. Appl. Phys. Lett., **124** (3), 034001 (2024). DOI: 10.1063/5.0186997
- [11] T. Takui, L. Berliner, G. Hanson. *Electron spin resonance* (*ESR*) based quantum computing (Springer, N.Y., 2016) v. 31, p. 255. DOI: 10.1007/978-1-4939-3658-8
- S. Agnello, R. Boscaino, M. Cannas, F.M. Gelardi. Phys. Rev. B, 64 (17), 174423 (2001).
 DOI: 10.1103/PhysRevB.64.174423H

Редактор Г.А. Оганесян

Negatively charged nitrogen-vacancy centers in a silicon carbide crystal of $6H^{-28}$ SiC

F.F. Murzakhanov¹, G.V. Mamin¹, M.A. Sadovnikova¹, D.V. Shurtakova¹, O.P. Kazarova², M.R. Gafurov¹

 ¹ Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
 ² Ioffe Institute, 194021 St. Petersburg, Russia

Abstract High-spin (S = 1) color centers in isotope-modified crystal $6H^{-28}$ SiC have been identified by high-frequency electron paramagnetic resonance techniques. The components of the spin Hamiltonian (g, D, A) of negatively charged nitrogen-vacancy (NV^{-}) centers are determined and the influence of optical excitation modes on their relaxation characteristics is studied. The obtained results prove the potential possibility of using NV^{-} defects in $6H^{-28}$ SiC for the material implementation of qubits and spin-photonic interfaces.