06,08

Полярные свойства сферолитовых тонких пленок цирконата-титаната свинца, полученных высокотемпературным отжигом из аморфной фазы

© А.Р. Валеева¹, И.П. Пронин¹, Е.Ю. Каптелов¹, С.В. Сенкевич¹, М.В. Старицын^{1,2}, Д.А. Киселев³, С.А. Немов⁴

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² НИЦ "Курчатовский институт" — ЦНИИ Конструкционных материалов "Прометей" им. И.В. Горынина, Санкт-Петербург, Россия
 ³ Национальный исследовательский технологический университет "МИСиС", Москва, Россия
 ⁴ Санкт-Петербургский Политехнический университет Петра Великого, Санкт-Петербург, Россия
 Е-mail: Petrrovich@mail.ioffe.ru

Поступила в Редакцию 12 ноября 2024 г. В окончательной редакции 13 ноября 2024 г. Принята к публикации 14 ноября 2024 г.

Исследовано влияние микроструктуры (размера блоков и новых внутриблочных границ) сферолитовых тонких пленок цирконата-титаната свинца на величину внутреннего поля и самополяризации. Пленки, состав которых соответствовал области морфотропной фазовой границы, сформированы двухстадийным методом высокочастотного магнетронного распыления. Показано, что с ростом размера блоков изменяется величина радиально-латеральных растягивающих механических напряжений, приводящая к перераспределению отрицательного объемного заряда (электронов) в объеме тонкой пленки. Рассматривается возможный вклад в образование самополяризации объемного заряда кислородных вакансий, вызванного их направленной диффузией.

Ключевые слова: тонкие пленки цирконата-титаната свинца, сферолитовая микроструктура, латеральные механические напряжения, внутреннее поле, самополяризация, направленная диффузия кислородных вакансий.

DOI: 10.61011/FTT.2024.11.59333.304

1. Введение

В последнее время возрастает интерес исследователей к кристаллическим структурам, синтез которых происходит в процессе высокотемпературного отжига ранее осажденных на холодную подложку тонких аморфных пленок. Это связано с расширяющимся использованием тонкопленочных материалов в разнообразных приложениях с целью миниатюризации, энергосбережения и быстродействия приборов и устройств. В абсолютном своем большинстве кристаллизация аморфных пленок происходит путем зарождения островков, их последующего разрастания и слияния с образованием поликристаллической структуры.

Кристаллизация из аморфной фазы сопровождается изменением (как правило, увеличением) плотности пленок, что приводит к тому, что под действием радиальных механических напряжений разрастающийся островок принимает форму, близкую к плоскому цилиндру. Подобное образование сферолитового типа широко распространено при кристаллизации тонких пленок вне зависимости от их состава и симметрии кристаллической решетки [1–5]. Особенностями таких сферолитовых пленок является образование радиально-лучистой микроструктуры путем малоуглового некристаллического ветвления, сопровождающегося радиальным разворотом кристаллической решетки [1–9]. Как правило, угол разворота линейно увеличивается с увеличением радиуса сферолитового островка. Такие структуры часто относят к типу так называемых ротационных кристаллов [2,8].

Сферолитовая микроструктура часто наблюдается в тонких сегнетоэлектрических пленках, в том числе, в пленках цирконата-титаната свинца Pb(Zr,Ti)O₃ (ЦTC), сформированных как физическими, так и химическими методами [5,8–13]. Интерес к этим составам обусловлен, в первую очередь, их нарастающим использованием в микроэлектромеханике [14–16]. Для эффективного использования в устройствах микроэлектромеханики важно, чтобы сформированные пленки обладали макроскопической поляризацией — униполярностью (или самополяризацией), сравнимой по величине со спонтанной (или остаточной) поляризацией. Отметим, что наличие самополяризации приводит к большей устойчивости полярного состояния [17–19]. Образование макроскопического полярного состояния в тонкой сегнетоэлектриче-

ской пленке в процессе ее приготовления обычно связывают с поляризующим действием объемного заряда, формирующегося вблизи границы раздела тонкой пленки и нижнего электрода, предварительно нанесенного на подложку. Обычно в тонких пленках ЦТС объемный заряд на нижнем интерфейсе формируется в результате конденсации электронов на глубоких ловушках. При этом важно, чтобы положительный заряд в виде положительно заряженных кислородных вакансий был локализован в верхней части пленки, что способствовало бы формированию макроскопической поляризации во всем объеме пленки.

Другим возможным механизмом образования самополяризации является изгибная деформация кристаллической решетки, приводящая к образованию внутреннего поля. До последнего времени остается популярной версия, согласно которой образование самополяризации обусловлено действием флексоэлектрического эффекта, связанного с взаимным смещением атомов разного типа в пределах элементарной ячейки при изгибном воздействии на тонкую пленку за счет различия в величинах температурного коэффициента линейного расширения тонкой пленки и подложки [20,21]. Однако расчеты свидетельствуют о том, что в реальных условиях его действие слишком слабое [22]. Это определяет необходимость поиска иных механизмов, способствующих переориентации сегнетоэлектрических диполей в направлении градиента механических напряжений.

К таким механизмам может быть отнесен эффект направленной (восходящей) диффузии кислородных вакансий, который принято называть эффектом Горского [23–25]. Так как в сферолитовых пленках ЦТС наблюдается достаточно сильный разворот кристаллической решетки и, соответственно, деформация кристаллической решетки, можно было ожидать, что эффект оказывает существенное влияние на диффузию кислородных вакансий в пленках ЦТС.

Целью настоящей работы являлась сравнительная оценка образования внутреннего поля и самополяризации за счет образования отрицательного объемного заряда на нижнем интерфейсе пленки, и за счет направленной диффузии кислородных вакансий в сферолитовых тонких пленках ЦТС, в которых деформация кристаллической решетки зависела от среднего размера сферолитовых блоков [5].

2. Объекты и методы исследования

Для изучения эффекта были выбраны тонкие пленки ЦТС состава PbZr_{0.54}Ti_{0.46}O₃, полученные двухстадийным методом ВЧ магнетронного распыления. На первом этапе аморфные пленки осаждались на подложки при низкой температуре, а на втором, для кристаллизации перовскитовой фазы, они подвергались высокотемпературному отжигу при 580°C в течение 1 часа с последующим медленным остыванием в печи. Увеличение размера сферолитовых блоков достигалось уменьшением расстояния от мишени до подложки (D) в интервале 70–30 mm. При D = 30 mm размер блоков достигал максимальных значений ~ $40-50\,\mu$ m [5]. Толщина пленок составляла 500 nm. Подложкой служила платинированная кремниевая пластина. Состав распыляемой керамической мишени ЦТС соответствовал области морфотропной фазовой границы, где диэлектрические и электромеханические параметры достигали максимальных значений [26].

Электронные изображения тонких пленок были получены с использованием растрового электронного микроскопа Lyra 3 (Tescan). Энергия зондирующего электронного пучка составляла 12 keV. Для изучения пьезоотклика использовался метод силовой микроскопии пьезоэлектрического отклика MFP-3D SA (Asylum Research). Измерения проводились при приложении на кантилевер переменного напряжения величиной 5V на частоте 50 kHz. Площадь сканируемой поверхности составляла 40 × 40 µm. Для проведения электрофизических измерений на свободную поверхность пленок наносились контактные площадки размером ~ 100 × 100 µm. Для изучения диэлектрических свойств использовался автоматизированный комплекс на базе измерителя иммитанса Е7-20. Петли диэлектрического гистерезиса изучались с помощью модифицированной схемы Сойера-Тауэра.

3. Экспериментальные результаты и их обсуждение

На рис. 1 представлены карты дифракции отраженных электронов, полученные на пленках, осажденных при D = 60, 40 и 30 mm (a-c, соответственно). Карты свидетельствуют об увеличении размера сферолитовых блоков при уменьшении расстояния мишень-подложка. Увеличение размера блоков, в свою очередь, приводит к увеличению скорости разворота кристаллической решетки — от $0.4-0.5 \text{ deg}/\mu \text{m}$ при D = 70 mmдо $\sim 1.4 - 1.5 \text{ deg}/\mu m$ при D = 40 mm. Согласно данным работ [2,3] деформация кристаллической решетки возрастает пропорционально скорости разворота достигая величины ~ 1.5% [5]. В свою очередь, максимальные механические напряжения оцениваются величиной $\sim 580 \,\mathrm{MPa}$, близкой к величине предела упругости в пленках ЦТС [27]. По-видимому, реально, величина этих напряжений несколько ниже, однако для более точного количественного определения требуется проведение довольно сложных и дорогостоящих исследований.

В пленках с максимальными размерами блоков (осажденных при D = 30 mm) скорость разворота снижалась (таблица). Это связывается нами с появлением дополнительных незамкнутых большеугловых границ (рис. 1), по всей видимости, вызванных достижением предельных упругих механических напряжений. Эти границы представляют собой области нарушения кристаллической решетки с повышенной концентрацией дислокаций и

Рис. 1. Карты распределения кристаллографических осей, нормально ориентированных к плоскости пленки для тонких пленок, осажденных при расстоянии мишень–подложка 60 (*a*), 40 (*b*) и 30 mm (*c*).

Рис. 2. Карта нормальной составляющей пьезоэлектрического отклика (*a*, *c*) и ее распределение по площади сканирования (*b*, *d*) тонких пленок ЦТС осажденных при расстоянии мишень–подложка 40 (*a*, *b*) и 60 mm (*c*, *d*).

Расстояние мишень-подложка, mm	Средняя площадь сферолитовых блоков, μm^2	Скорость разворота решетки, deg/µm	Латеральная составляющая поляризации, arb. units
30 40	770 590	0.80 1.40	16 23
50	430	1.05	22
60	215	0.50	6.1
70	220	0.50	5.3

Изменение размера сферолитовых блоков, скорости разворота кристаллической решетки и латеральной поляризации в пленках ЦТС в зависимости от расстояния мишень-подложка

Рис. 3. Самополяризация (*P*_{self}) тонких пленок ЦТС осажденных при различном расстоянии мишень-подложка.

пор, что приводит к частичной релаксации латеральных механических напряжений. Кратное увеличение латеральной составляющей сегнетоэлектрической поляризации (таблица) [5,9] также свидетельствует в пользу роста растягивающих механических напряжений с увеличением размеров блоков, что способствует переориентации поляризации в направлениях, максимально близких к плоскости пленки (подложки).

На рис. 2 представлены изображения нормальной составляющей пьезоотклика, изменение цветовой гаммы которых отражают изменение величины самополяризации (P_{self}) пленок, и гистограммы распределения P_{self} по площади сканирования исследуемых образцов. Величина сдвига гистограммы по оси абсцисс относительно начала координат пропорциональна величине P_{self} . Рис. 3 отражает изменение величины P_{self} с ростом D. Видно, что зависимость $P_{self}(D)$ проходит через минимум при D = 40 mm, который соответствует максимальным значениям растягивающих механических напряжений.

Результаты исследования диэлектрических свойств пленок представлены на рис. 4 и 5. Рис. 4 отражает форму петель диэлектрического гистерезиса (P-V), измеренных в электрическом поле амплитудой 200 kV/cm на частоте 1 kHz. На их основе построена зависимость

величины внутреннего поля (E_{int}) , определяемой смещением петли вдоль оси абсцисс, от расстояния мишеньподложка (рис. 5). Из рис. 5 видно, что E_{int} резко уменьшается в пленке, осажденной при D = 40 mm: на графике эта величина $E_{int} = 10 \, \text{kV/cm}$ почти в два раза меньше, чем в соседних точках. При этом максимальное значение $E_{\rm int} \sim 30 \, \rm kV/cm$ наблюдалось в пленках, отличающихся высокой концентрацией незамкнутых большеугловых границ (при D = 30 mm). Согласно данным работ [18,19] величина внутреннего поля в тонких пленках ЦТС определяется величиной отрицательного объемного заряда (электронов), локализованного на нижнем интерфейсе сегнетоэлектрической пленки при отсутствии верхнего электрода, а сам заряд определяется концентрацией заряженных кислородных вакансий. Величина же самополяризации P_{self} является результатом переориентации сегнетоэлектрических диполей под действием поля объемного заряда и зависит от распределения поля по толщине пленки, и, значит, от распределения заряженных кислородных вакансий.

Как показано в работах [5,9], увеличение растягивающих латеральных (двухосных) механических напряжений приводит к резкому увеличению сигнала второй оптической гармоники и, значит, латеральной проекции поляризации с максимальными значениями в пленках, осажденных при $D = 40 \,\mathrm{mm}$ (см. таблицу). Другим следствием является возникновение латерально-радиальной самополяризации, вектор которой направлен от центра сферолитового островка (или блока) к периферии. Направление ее вектора определяется отрицательным зарядом, создаваемым электронами, локализованными на глубоких ловушках границы перовскитового островка, и радиальной ориентацией сегнетоэлектрических диполей с привязанными к ним кислородными вакансиями, равномерно распределенными в объеме пленки (рис. 6, a). Появление объемного заряда на периферии островков (или блоков) означает перераспределение отрицательного заряда, что приводит к уменьшению объемного заряда на нижнем интерфейсе пленки, и, как следствие, к уменьшению величины внутреннего поля E_{int} (рис. 5) и нормально ориентированной поляризации (P_{self}) (рис. 3). Образование многочисленных большеугловых границ в пленках, осажденных при $D = 30 \,\mathrm{mm}$, означает не

Рис. 4. Петли диэлектрического гистерезиса, тонких пленок ЦТС, осажденных при расстоянии мишень–подложка 30 (*a*), 40 (*b*) и 70 mm (*c*). Частота — 1 kHz.

Рис. 5. Изменение величины внутреннего поля (E_{int}) , определенной по петлям диэлектрического гистерезиса, для тонких пленок ЦТС осажденных при разном расстоянии мишень-подложка.

только частичную релаксацию (т.е. уменьшение) латеральных механических напряжений, но и образование проводящих каналов, облегчающих дополнительную зарядку нижнего интерфейса, и приводящих к увеличению как E_{int} , так и P_{self} (рис. 6, *b*).

При развороте кристаллической решетки с градиентом механических напряжений, направленным к подложке, рис. 6, снижение радиально-латеральных механических напряжений должно приводить к перераспределению кислородных вакансий в верхнюю часть пленки. Для оценки потока кислородных вакансий (I_v) под действием градиента упругих напряжений воспользуемся формулой [28]:

$$I_{v} = N_{v} (D_{v}/kT) (\partial \sigma/\partial x) \omega_{v}, \qquad (1)$$

где N_v — концентрация кислородных вакансий, D_v — коэффициент диффузии кислородных вакансий, k — постоянная Больцмана, T — температура, σ — механические напряжения, ω_v — объем, занимаемый кислородной вакансией. Согласно данным работы [29], коэффициент

Рис. 6. Схематическое изображение распределения объемного заряда и направления векторов нормально ориентированной самополяризации и латеральной самополяризации.

диффузии в тонких пленках ЦТС при комнатной температуре характеризуется величиной $D_v \sim 5 \cdot 10^{-20} \text{ m}^2$; $N_v \sim 10^{26} \text{ m}^{-3}$ [30], $\sigma \sim 5 \cdot 10^{10} \text{ Pa}$, $\omega_v \sim 8 \cdot 10^{-30} \text{ m}^3$. Отсюда следует, что поток кислородных вакансий, возникающий под действием упругих напряжений в пленке толщиной 500 nm при комнатной температуре оценивается как $I_v \sim 10^{13} \text{ m}^{-2} \cdot \text{s}^{-1}$.

Однако, для более точной оценки скорости диффузии следует учитывать по меньшей мере два фактора. Один из них связан с тем, что сферолитовая структура отличается высокой концентрацией дислокаций (по нашей оценке $\sim 10^{17} \, {
m m}^{-2}$), за счет которой поток кислородных вакансий может увеличиваться на ~4-5 порядков. Другой фактор относится к экспоненциальному росту коэффициента диффузии с температурой, что может привести к его увеличению при температуре отжига на 3-4 порядка [30]. В этой связи, с учетом этих факторов, величина потока вакансий может оценочно возрасти на 7–9 порядков и составить $\sim 10^{20} - 10^{22} \, m^{-2} \cdot s^{-1}.$ Это означает, что в процессе кристаллизации фазы перовскита (за время $\sim 10^4 \, {
m s}$) большая (или значительная) часть заряженных кислородных вакансий может переместиться в верхнюю часть тонкой пленки (рис. 6, b). В этом случае образование внутреннего поля за счет объемного заряда кислородных вакансий может являться альтернативным механизмом формирования самополяризации. Однако для проверки этой версии требуется проведение дополнительных исследований.

4. Выводы

Эксперименты показали, что увеличение размера сферолитовых блоков и появление новых внутриблочных границ в тонких сегнетоэлектрических пленках ЦТС приводит к изменению латеральных механических напряжений и, как следствие, к изменению условий формирования объемного заряда и существенному изменению величин внутреннего поля и самополяризации. Объяснение наблюдаемых эффектов основано на сложившихся представлениях о природе образования внутреннего поля и самополяризации, связанной с формированием отрицательного объемного заряда. Тем не менее, наблюдаемые эффекты в тонких пленках ЦТС, вызванные деформацией кристаллической решетки под действием латеральных механических напряжений, свидетельствуют о том, что необходимо учитывать вклад в образование самополяризации направленной диффузии кислородных вакансий на стадии кристаллизации фазы перовскита.

Финансирование работы

Работа выполнена при поддержке гранта РНФ № 24-22-00631.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A.G. Shtukenberg, Yu.O. Punin, E. Gunn, B. Kahr. Chem. Rev. 112, 3, 1805 (2012).
- [2] V.Yu. Kolosov, A.R. Thölén. Acta Mater. 48, 1829 (2000).
- [3] E.J. Musterman, V. Dierolf, H. Jain. Int. J. Appl. Glass Sci. 13, 3, 402 (2022).
- [4] B. Da, L. Cheng, X. Liu, K. Shigeto, K. Tsukagoshi, T. Nabatame, Z. Ding, Y. Sun, J. Hu, J. Liu, D. Tang, H. Zhang, Z. Gao, H. Guo, H. Yoshikawa, S. Tanuma. Sci. Technol. Adv. Mater. Meth. 3, 1, 2230870 (2023).
- [5] М.В. Старицын, В.П. Пронин, И.И. Хинич, С.В. Сенкевич, Е.Ю. Каптелов, И.П. Пронин, А.С. Елшин, Е.Д. Мишина. ФТТ 65, 8, 1368 (2023).
 М.V. Staritsyn, V.P. Pronin, I.I. Khinich, S.V. Senkevich, E.Yu. Kaptelov, I.P. Pronin, A.S. Elshin, E.D. Mishina. Phys. Solid State 65, 8, 1312 (2023).
- [6] N.R. Lutjes, S. Zhou, J. Antoja-Lleonart, B. Noheda, V. Ocelík. Sci. Rep. 11, 14888 (2021).
- [7] B.J. Kooi, J.Th.M. De Hosson. J. Appl. Phys. 95, 4714 (2004).
- [8] О.М. Жигалина, Д.Н. Хмеленин, Ю.А. Валиева, В.Ю. Колосов, А.О. Бокуняева, Г.Б. Кузнецов, К.А. Воротилов, А.С. Сигов. Кристаллография 63, 4, 620 (2018).
 О.М. Zhigalina, D.N. Khmelenin, Y.A. Valieva, V.Yu. Kolosov, K.A. Kuznetsov, A.O. Bokunyaeva, K.A. Vorotilov, A.S. Sigov. Crystallography Reports 63, 4, 646 (2018).
- [9] А.С. Елшин, И.П. Пронин, С.В. Сенкевич, Е.Д. Мишина. Письма в ЖТФ 46, 8, 32 (2020).
 А.S. Elshin, I.P. Pronin, S.V. Senkevich, E.D. Mishina. Tech. Phys. Lett. 46, 4, 385 (2020).

- [10] G.A.C.M. Spierings, V.J.B.A. an Zon, P.K. Larsen, M. Klee. Integr. Ferroelectr. 3, 3, 283 (1993).
- [11] S.-Y. Chen, I.-W. Chen. J. Am. Ceram. Soc. 81, 1, 97 (1998).
- [12] E.M. Alkoy, S. Alkoy, T. Shiosaki. Ceram. Int. 33, 8, 1455 (2007).
- [13] I. Bretos, E. Rodrigez-Castellon, M. Tomczyk, R. Jimenez, P.M. Vilarinho, M.L. Calzada. Sci. Rep. 6, 20143 (2016).
- [14] P. Muralt, R.G. Polcawich, S. Trolier-McKinstry. MRS Bulletin 34, 9, 658 (2009).
- [15] Y. Ma, J. Song, X. Wang, Y. Liu, J. Zhou. Coatings 11, 8, 944 (2021).
- [16] L. Song, S. Glinsek, E. Defay. Appl. Phys. Rev. 8, 041315 (2021).
- [17] A.L. Kholkin, K.G. Brooks, D.V. Taylor, S. Hiboux, N. Setter. Integr. Ferroelectr. 22, 525 (1998).
- [18] V.P. Afanasjev, A.A. Petrov, I.P. Pronin, E.A. Tarakanov, A.V. Pankrashkin, E.Yu. Kaptelov, J. Graul. J. Phys. Condens. Matter 13, 8755 (2001).
- [19] N. Balke, I. Bdikin, S.V. Kalinin, A.L. Kholkin. J. Am. Ceram. Soc. 92, 8, 1629 (2009).
- [20] E. Sviridov, I. Sem, V. Alyoshin, S. Biryukov, V. Dudkevich. MRS Online Proc. Lib. 361, 141 (1994).
- [21] Л.А. Делимова, Н.В. Зайцева, В.В. Ратников, В.С. Юферев, Д.С. Серегин, К.А. Воротилов, А.С. Сигов. ФТТ 63, 8, 1076 (2021).
 - L.A. Delimova, N.V. Zaitseva, V.V. Ratnikov, V.S. Yuferev, D.S. Seregin, K.A. Vorotilov, A.S. Sigov. Phys. Solid State **63**, *8*, 1145 (2021).
- [22] A. Gruverman, B.J. Rodriguez, A.I. Kingon, R.J. Nemanich, A.K. Tagantsev, J.S. Cross, M. Tsukada. Appl. Phys. Lett. 83, 728 (2003).
- [23] W.S. Gorsky. Phys. Z. Sowjetunion 8, 457 (1935).
- [24] А.М. Косевич. УФН 114, 3, 509 (1974).
- [25] I.P. Pronin, S.A. Kukushkin, V.V. Spirin, S.V. Senkevich, E.Yu. Kaptelov, D.M. Dolgintsev, V.P. Pronin, D.A. Kiselev, O.N. Sergeeva. Mater. Phys. Mech. **30**, *1*, 20 (2017).
- [26] Б. Яффе, У. Кук, Г. Яффе. Пьезоэлектрическая керамика. Мир, М. (1974). 288 с.
- [27] D.E. Cox, B. Noheda, G. Shirane. Phys. Rev. B 71, 134110 (2005).
- [28] С.А. Кукушкин, А.В. Осипов. Письма в ЖТФ **43**, *13*, 81 (2017).
- [29] G. Holzlechner, D. Kastner, C. Slouka, H. Hutter, J. Fleig. Solid State Ion. 262, 625 (2014).
- [30] B. Akkopru-Akgun, D.M. Marincel, K. Tsuji, T.J.M. Bayer, C.A. Randall, M.T. Lanagan, S. Trolier-McKinstry. J. Am. Ceram. Soc. 104, 10, 5270 (2021).

Редактор А.Н. Смирнов