07,13

Влияние содержания Sr на кристаллическую и магнитную структуры ортоферрита $La_{1-x}Sr_xFeO_{3-y}$

© В.Д. Седых¹, О.Г. Рыбченко¹, А.И. Дмитриев², В.И. Кулаков¹, А.М. Гапочка³, В.С. Русаков³

¹ Институт физики твердого тела им. Ю.А. Осипьяна РАН,

Черноголовка, Россия

² Федеральный исследовательский центр проблем химической физики и медицинской химии РАН,

Черноголовка, Россия

³ Московский государственный университет им. М.В. Ломоносова,

Москва, Россия

E-mail: sedykh@issp.ac.ru

Поступила в Редакцию 2 сентября 2024 г. В окончательной редакции 17 сентября 2024 г. Принята к публикации 18 октября 2024 г.

С помощью рентгеновской дифракции, мессбауэровской спектроскопии и магнитных измерений проведены исследования структурных и магнитных особенностей замещенного феррита лантана $La_{1-x}Sr_xFeO_{3-\gamma}$, как исходно-синтезированного, так и после вакуумных отжигов, в зависимости от содержания Sr (для x = 0.33 и 0.50). Показано, что в исходных образцах с ростом содержания стронция объем кристаллической решетки, приходящийся на псевдокубическую перовскитную ячейку, уменьшается, а число вакансий и ионов Fe⁴⁺ растет. Определены температуры Нееля для двух составов соединения: $T_N \approx 233$ К для образца $La_{0.67}Sr_{0.37}FeO_{3-\gamma}$. При вакуумном отжиге происходит перераспределение вкладов ионов Fe³⁺ с различным локальным окружением, что приводит к изменению соотношения J_F/J_{AF} , смещению баланса в сторону усиления антиферромагнетизма и заметному росту температуры Нееля T_N , уменьшению ширины петель магнитного гистерезиса и величины намагниченности.

Ключевые слова: ортоферриты, валентные состояния Fe, кислородные вакансии.

DOI: 10.61011/FTT.2024.11.59335.229

1. Введение

Перовскитные ортоферриты $R_{1-x}A_x$ FeO_{3- γ}, где R — редкоземельный элемент, A — Ва, Са, или Sr, в силу своих необычных электрических, магнитных и каталитических свойств являются перспективными материалами в самых разных областях, например, в качестве электродных материалов для топливных элементов, катализаторов, химических сенсоров, оптоэлектронных приборов, приборов магнитной памяти и пр. [1,2]. Появились публикации, указывающие на мощные антибактериальные свойства этих соединений, связанные с наличием в решетке кислородных вакансий [3]. В этих системах ионы переходных металлов имеют смешанные валентные состояния, Fe³⁺ и Fe⁴⁺, что вызвано введением двухвалентных ионов (A) на места трехвалентного элемента (R) [4].

В ортоферритах $La_{1-x}A_xFeO_{3-\gamma}$ существует взаимосвязь между долей замещающего двухвалентного элемента, содержанием кислорода, количественным соотношением валентных состояний Fe³⁺ и Fe⁴⁺. Стандартная процедура синтеза ортоферритов с помощью золь-гель метода предполагает участие в этом процессе кислорода из воздуха. Высокотемпературные отжиги в разной атмосфере (на воздухе, в кислороде, в вакууме) также влияют на содержание в решетке кислорода и

валентное состояние ионов Fe. Это, в конечном счете, определяет структуру соединения и его физические свойства. Кроме того, важную роль в формировании той или иной кристаллической решетки может играть разница в ионных радиусах La и замещающего элемента. Выделить влияние каждого из изменяющихся параметров чрезвычайно трудно, поэтому необходимо до минимума уменьшать их число. В связи с этим в работах [5-12] был проведен ряд исследований на ферритах $La_{1-x}Sr_xFeO_{3-\gamma}$ с фиксированными соотношениями количества ионов La/Sr, а также после серии вакуумных отжигов в некотором интервале температур. В синтезированных (исходных) образцах количество ионов Fe⁴⁺ максимально, а количество кислородных вакансий минимально. При вакуумном отжиге количество кислорода и, соответственно, ионов Fe⁴⁺ уменьшается. Можно подобрать такую температуру вакуумного отжига, при которой весь Fe⁴⁺ переходит в Fe³⁺, и выход из решетки кислорода заканчивается.

В базовом незамещенном феррите лантана LaFeO_{3- δ} магнитные свойства являются результатом сверхобменных взаимодействий, включающих 3*d* орбитали ионов Fe³⁺ и *p* орбитали кислорода [13]. Согласно теории Goodenough [14], сверхобменное взаимодействие Fe³⁺-O²⁻-Fe³⁺ между катионами Fe антиферромагнитное, и более сильное, чем между ионами Fe⁴⁺ и Fe³⁺. В замещенном феррите лантана $La_{1-x}Sr_xFeO_{3-\gamma}$ наличие ионов Fe^{4+} ослабляет сверхобменное взаимодействие, что понижает температуру Нееля [15,16].

В связи с вышесказанным, исследование влияния каждого варьируемого параметра на те, или иные свойства ортоферритов, а также изучение взаимосвязанных процессов, происходящих в структуре замещенных ортоферритов на локальном уровне, соотнесение их с магнитными свойствами этих соединений являются важными как с научной точки зрения, так и в прикладном значении.

В представленной работе поставлена задача суммировать данные о взаимосвязанных процессах, происходящих в ходе вакуумных отжигов в соединениях $La_{1-x}Sr_xFeO_{3-\gamma}$ с фиксированным содержанием стронция 33 и 50%, определить зависимость этих процессов от доли двухвалентных ионов Sr.

2. Эксперимент

Исходные поликристаллические образцы $La_{0.67}Sr_{0.33}FeO_{3-\nu}$ (Sr33) и La_{0.5}Sr_{0.5}FeO_{3- ν} (Sr50)воздухе синтезированы на золь-гель методом при 1100°C в течение 20 часов с использованием в качестве исходных реагентов нитратов Sr, Fe и La в стехиометрическом соотношении и глицина. Детали синтеза описаны в работе [5]. После синтеза образцы медленно охлаждались вместе с печью до комнатной температуры. Для изменения содержания кислорода образцы отжигались в вакууме (10^{-3} Torr) при температурах 200-650°С в течение 4 часов.

Структурная аттестация поликристаллических образцов проводилась при комнатной температуре на дифрактометре Rigaku SmartLab SE с CuK_{α} -излучением. Для проведения фазового анализа и определения структурных параметров использовались программы Powder Cell 2.4 и Match3.

Мессбауэровские измерения поликристаллических образцов выполнены при комнатной температуре и 85 К на спектрометре СМ 1101, работающем в режиме постоянного ускорения. В эксперименте использовался радиоактивный источник 57 Co(Rh). Обработка и анализ спектров проводились методами модельной расшифровки и восстановления распределения сверхтонких параметров спектра с помощью программы SpectrRelax [17].

Зависимости магнитного момента от температуры M(T) и напряженности магнитного поля M(H) были измерены с помощью вибрационного магнитометра многофункциональной измерительной криомагнитной установки CFMS фирмы Cryogenic Ltd, UK. Зависимости M(T) измерены в режимах ZFC (образец предварительно охлажден в нулевом магнитном поле (zero field cooling)) и FC (образец предварительно охлажден в магнитном поле (field cooling) H = 10 kOe) в диапазоне температур T = 2-400 K в магнитном поле H = 1 kOe. Зависимости M(H) измерены в виде петель магнитного гистерезиса при температурах T = 2 K и 300 K в магнитных полях напряженностью до 50 kOe.

3. Результаты и обсуждение

3.1. Рентгеноструктурный анализ

Рентгеновские данные для $SrFeO_{3-\nu}$, а также для замещенных ферритов лантана La_{1-x}Sr_xFeO_{3-v} при разных фиксированных соотношениях La/Sr, как исходных образцов, так и отожженных в вакууме, были приведены в наших более ранних работах [5-12]. В настоящей работе проанализирована зависимость структуры ферритов от содержания в них Sr. Для каждого соотношения La/Sr рассматриваются два равновесных состояния исходный феррит, синтезированный золь-гель методом на воздухе, и отожженный в вакууме при температуре 650°С. Выбор этой температуры отжига обусловлен тем, что для всех исследуемых составов такая термообработка приводит к полному переходу Fe⁴⁺ в Fe³⁺ и стабилизации равновесного содержания кислорода. Отдельные данные будут приведены ниже для ряда ферритов от SrFeO_{3- ν} до LaFeO₃. Подробное рассмотрение структуры, в том числе на локальном уровне с помощью месбауэровской спектроскопии, проведено для двух образцов с концентрацией Sr x = 0.33 и 0.50 (Sr33 и Sr50). Изменения в них в ходе вакуумных отжигов носят последовательный, и непрерывный характер, в отличие от составов La_{0.33}Sr_{0.67}FeO_{3-у} (Sr67) и SrFeO_{3-у}. В последних двух случаях при вакуумном отжиге образуются вакансионно-упорядоченные фазы [5-7].

Как показали наши результаты, исходный образец Sr33 имеет ромбическую структуру (пр. гр. Pbnm, JCPDS 01-089-1269) [11]. Описание дифракционной картины с добавлением ромбоэдрической фазы R3c дает несколько лучший результат. Обе фазы имеют перовскитоподобную структуру и близкие объемы кристаллической решетки, приходящиеся на формульную единицу, V/Z (для *Pbnm* Z = 4, для $R\bar{3}c$ Z = 6). Однако наложение и значительное уширение линий не позволяют с достаточной достоверностью определить параметры фаз и их количественное соотношение. Поэтому расчет объема ячейки V/Z проводился в однофазном приближении (Pbnm). После вакуумного отжига при 650°C образец становится однофазным с ромбической структурой. В ходе вакуумных отжигов при различных температурах параметры и объем ячейки изменяются монотонно.

Исходный образец Sr50 имеет ромбоэдрическую ячейку $R\bar{3}c$ (JCPDS 01-089-1269), представляющую из себя несколько искаженный куб. В ходе отжигов ромбоэдрическое искажение ячейки уменьшается, и отожженный при 650°С образец имеет кубическую решетку $Pm\bar{3}m$ (V/Z = 1). На рис. 1 показана зависимость объема решетки, приходящегося на формульную единицу (V/Z) от температуры вакуумного отжига T_{ann} для образцов Sr33 и Sr50. Рис. 2 иллюстрирует зависимость объема V/Z от количества Sr в исходных (as-prepared) и отожженных

Рис. 1. Зависимость от температуры вакуумного отжига *T*_{ann} объема перовскитной ячейки для образцов Sr50 и Sr33.

Рис. 2. Зависимость от количества Sr объема перовскитной ячейки в исходных (as-prep.) и отожженных в вакууме при 650°C образцах.

образцах. Для сравнения на рис. 2 приведены данные для образцов SrFeO_{3- γ}, LaFeO₃, а также замещенного феррита лантана с x = 0.67 (Sr67) [5,7]. Наблюдается общая тенденция к уменьшению объема с увеличением количества Sr. Для исходных образцов зависимость имеет непрерывный характер, тогда как для отожженных образцов объем увеличивается скачком при переходе от Sr50 к Sr67. Это может быть связано с тем, что при вакуумном отжиге образцов Sr67 и SrFeO_{3- γ} их структура претерпевает существенные изменения с образованием вакансионно-упорядоченных слоистых фаз: LaSr₂Fe₃O₈ и браунмиллеритной SrFeO_{2.5}. Эти структуры выходят за рамки поставленной задачи, поэтому в данной работе подробно не рассматриваются.

В исходных образцах феррита по мере увеличения содержания Sr объем ячейки V/Z уменьшается, несмотря на то, что ионный радиус Sr²⁺ больше, чем у La³⁺ [18].

Физика твердого тела, 2024, том 66, вып. 11

Обычно этот факт связывают с изменением валентного состояния части ионов железа с Fe^{3+} на Fe^{4+} и с различием их ионных радиусов. Ионный радиус Fe^{4+} (0.585 Å) значительно меньше, чем у Fe^{3+} (0.645 Å), поэтому при замещении La на Sr и, соответственно, увеличении доли ионов Fe^{4+} объем кристаллической решетки уменьшается. Кроме того, с увеличением содержания стронция уменьшается концентрация кислорода.

В отожженных образцах с ростом доли Sr до 50% объем ячейки тоже линейно уменьшается, однако не так резко, как в исходных образцах (рис. 2). Поскольку в решетке таких образцов присутствует только Fe^{3+} , можно предположить, что уменьшение объема связано только с изменением содержания кислорода.

3.2. Мессбауэровские данные

Данные о валентных состояниях атомов Fe в замещенных ферритах $La_{1-x}Sr_xFeO_{3-\gamma}$ можно получить, используя мессбауэровскую спектроскопию. Интенсивность мессбауэровских парциальных спектров пропорциональна количеству соответствующего валентного состояния Fe. Зная их количество, можно с хорошей точностью оценить содержание кислорода в образцах. В наших работах [9–12] проведены подробные мессбауэровские исследования образцов с фиксированным количеством Sr: Sr50 и Sr33.

Из величин изомерных сдвигов δ мессбауэровских спектров исходных образцов Sr33 и Sr50, измеренных при комнатной температуре, следует что, кроме Fe³⁺, часть ионов Fe находится в усредненно-валентном состоянии, т.е. с дробной степенью окисления между 3+ и 4+ [9,12]. Такое усредненно-валентное состояние ионов Fe обусловлено быстрым (с характерным временем $< 10^{-8}$ s) переносом электронов между ионами Fe³⁺ и Fe^{4+} при комнатной температуре, поэтому ионы Fe^{4+} в замещенных ферритах не проявляются в мессбауэровских спектрах, измеренных при комнатной температуре [16,19,20]. При вакуумном отжиге рост количества кислородных вакансий должен приводить к искажению кислородного окружения ионов Fe и, следовательно, к увеличению величины квадрупольного смещения мессбауэровских спектров. Однако, средняя величина квадрупольного смещения ε_{aver} находится вблизи нулевого значения. Можно предположить, что в силу большой подвижности кислорода в этих ферритах [21] ионы кислорода могут перераспределяться таким образом, чтобы создать более симметричное кислородное окружение ионов железа.

Поскольку из мессбауэровских спектров, измеренных при комнатной температуре, образцов Sr33 и Sr50 не удалось обнаружить в чистом виде валентные состояния Fe, для их выявления были проведены мессбауэровские измерения при 85 К [10–12]. В табл. 1 приведены основные сверхтонкие параметры и относительные интенсивности парциальных спектров ионов Fe^{3+} и Fe^{4+} для образцов Sr33 и Sr50.

x	T _{ann}	Fe	δ , mm/s	ε, mm/s	H_n , kOe	<i>I</i> , %
x 0.33 0.50	0.5 pr	Fe ³⁺	0.385 ± 0.006	-0.011 ± 0.006	523.1 ± 0.5	83.3 ± 0.9
0.33	as-pi.	Fe ⁴⁺	-0.083 ± 0.015	-0.013 ± 0.015	257.2 ± 0.2	16.7 ± 0.9
0.33	650°C	Fe ³⁺	0.439 ± 0.004	ε , mm/s H_n , kOe -0.011 ± 0.006 523.1 ± 0.5 -0.013 ± 0.015 257.2 ± 0.2 -0.004 ± 0.003 548.3 ± 0.5 -0.013 257.2 -0.009 ± 0.009 496.7 ± 4.0 -0.028 ± 0.012 257.8 ± 0.9 -0.015 ± 0.005 540.7 ± 2.1	548.3 ± 0.5	99.1 ± 0.8
	030 C	Fe ⁴⁺	-0.083	-0.013	257.2	0.9 ± 0.8
	0.5 pr	Fe ³⁺	0.393 ± 0.011	-0.009 ± 0.009	496.7 ± 4.0	74.5 ± 1.0
0.50	as-pi.	Fe ⁴⁺	-0.062 ± 0.012	δ , mm/s ε , mm/s H_n , kOe I , % 0.385 ± 0.006 -0.011 ± 0.006 523.1 ± 0.5 83.3 ± 0.9 -0.083 ± 0.015 -0.013 ± 0.015 257.2 ± 0.2 16.7 ± 0.9 0.439 ± 0.004 -0.004 ± 0.003 548.3 ± 0.5 99.1 ± 0.8 -0.083 -0.013 257.2 0.9 ± 0.8 0.393 ± 0.011 -0.009 ± 0.009 496.7 ± 4.0 74.5 ± 1.0 -0.062 ± 0.012 -0.015 ± 0.005 540.7 ± 2.1 98.5 ± 1.0 -0.062 -0.028 257.8 1.5 ± 1.0		
0.50	650°C	Fe ³⁺	0.421 ± 0.008	-0.015 ± 0.005	540.7 ± 2.1	98.5 ± 1.0
	050 C	Fe ⁴⁺	-0.062	-0.028	-0.011 ± 0.000 323.1 ± 0.3 323.1 ± 0.3 -0.013 ± 0.015 257.2 ± 0.2 323.1 ± 0.3 -0.004 ± 0.003 548.3 ± 0.5 933.1 ± 0.3 -0.013 257.2 933.1 ± 0.3 -0.013 257.2 933.1 ± 0.3 -0.009 ± 0.009 496.7 ± 4.0 933.1 ± 0.3 -0.028 ± 0.012 257.8 ± 0.9 933.1 ± 0.3 -0.015 ± 0.005 540.7 ± 2.1 933.1 ± 0.3 -0.028 257.8 933.1 ± 0.3	1.5 ± 1.0

Таблица 1. Сверхтонкие параметры (изомерный сдвиг δ , квадрупольное смещение ε и сверхтонкое магнитное поле H_n) и относительные интенсивности (*I*) парциальных спектров ионов Fe³⁺ (средние значения) и Fe⁴⁺ в экспериментальных спектрах исходных (as pr.) и отожженных при 650°C образцов La_{1-x}Sr_xFeO_{3-y} (x = 0.33 и 0.50), полученные при 85 K.

Рис. 3. Зависимость от T_{ann} числа (a) ионов кислорода $(3-\gamma)$ и вакансий (γ) и (b) ионов Fe⁴⁺ для Sr33 и Sr50.

Модельная расшифровка спектров показала, что спектры представляют собой совокупность нескольких парциальных спектров в виде зеемановских секстетов, один из которых, с меньшим δ и сверхтонким магнитным полем $H_{\rm hf}$, можно отнести к ионам Fe⁴⁺, а остальные — к ионам Fe³⁺. Наличие нескольких парциальных спектров для ионов Fe³⁺ связано с тем, что в ближайшем окружении этих ионов присутствует разное число кислородных вакансий и ионов Fe⁴⁺, т.е. формируется неоднородное локальное окружение. Ион Fe⁴⁺ в ближайшем катионном окружении иона Fe³⁺ связа ближайшем в ближайшем анионном окружении иона Fe³⁺. Кислородная вакансия в ближайшем анионном окружении иона Fe³⁺ приводит к обрыву сверхобменной связи. И то и другое уменьшает $H_{\rm hf}$ и меняет величии у δ для ионов Fe³⁺ [22,23].

Если предположить, что вероятности эффекта Мессбауэра для ядер 57 Fe, принадлежащих ионам Fe³⁺ и Fe⁴⁺, практически одинаковы, то, используя относительные интенсивности парциальных спектров ионов Fe, можно для каждого образца La_{1-x}Sr_xFeO_{3-y} с заданной концентрацией (x) замещающих ионов Sr^{2+} определить число ионов Fe^{4+} ($y = I(Fe^{4+})$), число кислородных вакансий ($\gamma = (x-y)/2$) и анионов O²⁻ (3- γ) на формульную единицу. В работах [10–12] при фиксированных соотношениях La/Sr были определены числа валентных состояний атомов Fe и кислорода (кислородных вакансий) в исходных и отожженных в вакууме при разных температурах (200-650°C) образцах Sr33 и Sr50. На рис. 3 приведены зависимости числа ионов кислорода, вакансий и ионов Fe⁴⁺ в ферритах Sr33 и Sr50 от T_{ann} . Их исходные данные взяты из работ [5,7]. Исходные образцы имеют максимальное количество ионов Fe⁴⁺ и минимальное число вакансий. Как отмечено выше, с ростом концентрации Sr растет число ионов Fe⁴⁺ и уменьшается количество кислорода. При вакуумном отжиге с ростом $T_{\rm ann}$ количество кислорода и, соответственно, ионов Fe⁴⁺ уменьшается, и растет число кислородных вакансий. После вакуумного отжига при 650°С, когда

Рис. 4. Зависимость от концентрации Sr количества (*a*) ионов $\text{Fe}^{4+}(y)$ в исходных образцах и (*b*) ионов кислорода и кислородных вакансий в исходных и отожженных в вакууме при 650°C образцах.

все ионы Fe^{4+} переходят в Fe^{3+} , и выход кислорода из решетки завершается, число кислородных вакансий максимальное.

На рис. 4, *а* показано изменение числа ионов Fe⁴⁺ в исходных образцах в зависимости от концентрации Sr. Данные для образцов Sr67 и SrFeO_{3-v} взяты из работ [5,7]. Как следует из рисунка, в исходных образцах с ростом концентрации Sr линейно растет число ионов Fe⁴⁺. Исходя из полученных мессбауэровских данных, $y \approx x/2$ и $\gamma \approx (x - x/2)/2 \approx x/4$. На рис. 4, b приведены зависимости от концентрации Sr числа вакансий и числа ионов кислорода в исходных и отожженных при 650°С образцах. В этом случае наблюдается линейная зависимость. В отожженных образцах (где нет ионов Fe⁴⁺) наблюдается более резкое уменьшение кислорода (и, соответственно, увеличение числа вакансий) с ростом концентрации стронция. Это объясняется тем, что в процессе компенсации зарядового дисбаланса катионной подсистемы $(La_{1-x}^{3+}Sr_x^{2+})$, связанного с замещением La на Sr, из-за отсутствия ионов Fe⁴⁺ принимают участие только вакансии.

Использование мессбауэровских данных дает возможность не только рассчитать усредненные макроскопические характеристики соединения, такие как доля четырехвалентного железа и концентрация кислорода, но также получить информацию о структуре на локальном уровне. Зависимость параметров каждого отдельного парциального спектра ионов Fe³⁺ от числа ионов Fe⁴⁺ и вакансий в ближайшем окружении позволяет связать его с конкретным вариантом такого окружения (набором ослабленных или оборванных связей), а анализ интенсивностей парциальных спектров — оценить характер распределения таких дефектов по решетке. Введем число *т* — число оборванных или ослабленных обменных связей иона Fe^{3+} . Значение m = 0 означает, что ион Fe^{3+} в ближайшем окружении имеет все шесть обменных связей Fe³⁺-O²⁻-Fe³⁺, т.е. нет кислородных вакансий и ионов Fe⁴⁺. Зависимости интенсивностей парциальных

Рис. 5. Зависимость от числа *m* интенсивности $I(Fe^{3+})$ парциальных спектров для исходных (as-pr.) и отожженных при 650°C образцов Sr33 и Sr50.

спектров Fe³⁺ от T_{ann} для образцов Sr33 и Sr50 для разных значений m были получены в [10,12]. Используя эти данные, можно построить их зависимости от числа m для исходных и отожженных при 650°C образцов Sr33 и Sr50 (см. рис. 5).

В исходных образцах интенсивность парциальных спектров, отвечающих состоянию m = 0 (отсутствие вакансий и ионов Fe⁴⁺ в ближайшем окружении иона Fe³⁺), невелика: ~ 18% для образца Sr33 и ~ 13% для образца Sr50. Максимальную интенсивность имеют парциальные спектры с m = 1 для Sr33 (~ 40%) и с m = 2 для Sr50 (~ 35%). Это означает, что бо́льшая часть ионов Fe в исходных образцах имеет в своем локальном окружении один или два дефекта — оборванную или ослабленную связь. Парциальные спектры отожженных при 650°C образцов имеют максимальную интенсивность при m = 0: ~ 70% для Sr33 и ~ 60%

для Sr50. Их интенсивности сильно уменьшаются с ростом числа *m*.

Таким образом, в отожженных образцах наиболее интенсивны парциальные спектры ионов Fe^{3+} с октаэдрическим кислородным окружением, т. е. с m = 0, когда нет ни ионов Fe^{4+} , ни кислородных вакансий в ближайшем окружении. В целом, степень искажения ближайшего окружения ионов Fe меньше для образца Sr33, чем для Sr50, что коррелирует с количеством кислородных вакансий в них.

3.3. Схематика процессов при синтезе

Для ферритов лантана системы La_{1-x}Sr_xFeO_{3- γ} замещение La³⁺ на Sr²⁺ в решетке LaFeO₃ в силу необходимости соблюдения зарядового баланса приводит к уменьшению количества ионов кислорода O²⁻ и образованию вакантных кислородных мест (дефектов). Предположим при этом, что в феррите присутствуют ионы Fe только в степени окисления 3+, как в незамещенном феррите лантана LaFeO₃. Тогда для такого состояния содержание кислорода количественно связано с долей ионов Sr²⁺, с ростом концентрации ионов Sr²⁺ оно уменьшается. Назовем его "базовым", его количество определяется отношением La³⁺/Sr²⁺. Такое состояние феррита La_{1-x}Sr_xFeO_{3- γ} наблюдается в образцах, отожженных в вакууме при температуре 650°C и имеющих минимальное содержание кислорода.

Известно, что железо способно менять свою валентность и образовывать смешанные валентные состояния. На практике, при синтезе ортоферритов число ионов кислорода, входящих в решетку, значительно превышает "базовый" уровень, и ионы Fe^{3+} частично окисляются до состояния Fe^{4+} . Дополнительный по отношению к "базовому" кислород находится в балансе с Fe^{4+} и однозначно связан с ним простым количественным соотношением. Назовем этот кислород "варьируемым". Тогда формула феррита записывается как

$$La_{1-x}^{3+}Sr_x^{2+}Fe_{1-y}^{3+}Fe_y^{4+}O_{3-y}^{2-} (\gamma = x/2 - y/2).$$

Таким образом, суммарное число кислородных вакансий равно $\gamma = x/2-y/2 = (x-y)/2$. В итоге кристаллохимическую формулу феррита лантана La_{1-x}Sr_xFeO_{3-y} с учетом условия электронейтральности можно представить в виде:

$$\begin{aligned} \mathrm{La}_{1-x}^{3+} \mathrm{Sr}_{x}^{2+} \mathrm{Fe}_{1-y}^{3+} \mathrm{Fe}_{y}^{4+} \mathrm{O}_{3-y}^{2-} \Rightarrow \\ \Rightarrow (\mathrm{La}_{1-x}^{3+} \mathrm{Sr}_{x}^{2+}) (\mathrm{Fe}_{1-x+2y}^{3+} \mathrm{Fe}_{x-2y}^{4+}) (\mathrm{O}_{3-y}^{2-} \Box_{y}), \quad (1) \end{aligned}$$

где $x, y = x - 2\gamma$ и $\gamma = (x - y)/2$ — числа ионов Sr²⁺, Fe⁴⁺ и кислородных вакансий (\Box) на формульную единицу феррита соответственно. Вакуумным отжигом можно уменьшить количество кислорода до предельного значения (3-x/2). При этом соответственно Fe⁴⁺ переходит в Fe³⁺. В итоге можно заключить, что исходные образцы замещенных ферритов лантана имеют базовый кислород,

Таблица 2. Сводные данные по числу вакансий (γ), ионов кислорода ($3-\gamma$) и Fe⁴⁺ (y), а также по объему (V), приходящемуся на одну формульную единицу, для всех исследованных образцов Sr33 и Sr50, исходных (as-prepared) и отожженных в вакууме при температуре 650°C

Sample	γ	3-y	$\operatorname{Fe}^{4+}(y)$	V (Å ³)
Sr33 (as-prepared)	0.08	2.92	0.18	59.59
Sr50 (as-prepared)	0.12	2.88	0.26	58.82
Sr33 (650°C)	0.16	2.84	0	60.18
Sr50 (650°C)	0.24	2.76	0	59.96

Таблица 3. Сводные данные по изменению числа вакансий $(\Delta \gamma)$, ионов кислорода $(\Delta(3-\gamma))$, ионов Fe⁴⁺ (ΔFe^{4+}) и объема, приходящегося на одну формульную единицу (ΔV) , при изменении количества Sr (Sr33 \rightarrow Sr50) и вакуумного отжига (as-prepared \rightarrow 650°C)

Composition and annealing conditions		$\Delta \gamma$	$\Delta(3-\gamma)$	ΔFe^{4+} (Δy)	ΔV (Å ³)
Sr33 Sr50	as-prepared	+0.04	-0.04	+0.08	-0.77
$3133 \rightarrow 3130$	650°C	+0.08	-0.08	0	-0.22
as-prepared	Sr33	+0.08	-0.08	-0.18	+0.59
$\rightarrow 650^\circ C$	Sr50	+0.12	-0.12	-0.26	+1.14

мобильный кислород и ионы Fe³⁺ и Fe⁴⁺. В табл. 2 и 3 представлены сводные данные по всем параметрам, полученным из анализа мессбауэровских результатов, для рассмотренных образцов.

3.4. Магнитометрические данные

Замещенный La_{1-x}Sr_xFeO_{3- γ} является антиферромагнитным ортоферритом [4,15] так же как LaFeO₃ ($T_{\rm N} = 740$ K [23]) и SrFeO₃ ($T_{\rm N} = 134$ K [25]).

Температурные зависимости намагниченности M(T), измеренные в режимах ZFC и FC (образец предварительно охлажден в нулевом магнитном поле (zero field cooling) и в поле (field cooling) $H = 10 \,\mathrm{kOe}$), a также напряженности магнитного поля M(H) исходных образцов Sr50 и Sr33 приведены на рис. 6. В целом характер этих зависимостей образцов Sr50 и Sr33 схож между собой. Исходный образец Sr50 при комнатной температуре представляет собой парамагнетик, что подтверждается линейным видом зависимости M(H) при $T = 300 \, \text{K}$ (рис. 6, b). Вид зависимости M(H) парамагнетиков зависит от температуры, при которой происходило измерение. При низких температурах, когда $gS\mu_{\rm B}H/k_{\rm B}T \gg 1$, кривая M(H) парамагнетиков описывается функцией Бриллюэна. При высоких температурах, как в нашем случае, когда $gS\mu_{\rm B}H/k_{\rm B}T\ll 1$, функция Бриллюэна вырождается в прямую линию (рис. 6, b).

Рис. 6. (*a*) Температурные зависимости намагниченности M(T), измеренные в режимах ZFC и FC, исходного образца Sr50. Красная линия — аппроксимация окрестности перехода в магнитоупорядоченное состояние. На врезке показана производная $dM_{\rm FC}/dT$. (*b*) Петли магнитного гистерезиса, измеренные при температурах 2 и 300 К.

Рис. 7. (*a*) Температурные зависимости намагниченности M(T) исходного образца Sr33. Красная линия — аппроксимация окрестности перехода в магнитоупорядоченное состояние. (*b*) Петли магнитного гистерезиса, измеренные при различных температурах.

При T = 2 К кривая M(H) образца Sr50 не описывается функцией Бриллюэна и демонстрирует гистерезис, что соответствует не парамагнитному, а магнитоупорядоченному состоянию типа слабого ферромагнетизма.

Для образцов Sr50 и Sr33 на кривых M(T) наблюдаются несколько характерных температур (рис. 6, *a* и 7, *a*). Однако в рамках настоящей работы основной интерес представляют температуры Нееля T_N , влияния на них содержания Sr, числа ионов Fe⁴⁺ и кислорода.

В образце Sr50 температура $T_N \sim 233$ К соответствует перегибу обеих кривых M(T) (рис. 6, *a*) и хорошо визуализируется с помощью производной dM/dT (см. врезку на рис. 6, *a*). Температура T_N образца Sr33 (рис. 7, *a*) получается аппроксимацией кривой в окрестности перехода в магнитоупорядоченное состояние и составляет

 \sim 385 К. Ниже $T_{\rm N}$ кривые FC–ZFC для двух образцов начинают расходиться.

В образце Sr33 (рис. 7, b), магнитоупорядоченном при комнатной температуре, петля гистерезиса пропадает при 400 К, и кривая M(H) приобретает линейный вид.

Подобные кривые наблюдались ранее в замещенных ортоферритах $La_{1-x}Sr_xFeO_{3-\delta}$ с x = 2/3 и x = 3/4 и др. с антиферромагнитной структурой [26]. Спины в них выстраиваются антипараллельно из-за антиферромагнитной связи между двумя соседними ионами Fe³⁺ через промежуточный ион кислорода. Небольшое отклонение спинов от строгой антипараллельной ориентации, возникающее в результате зигзагообразного расположения вдоль оси *с* кислородных октаэдров, содержащих ионы Fe, приводит к появлению в образцах слабого

Рис. 8. (*a*) Температурные зависимости намагниченности M(T), измеренные в режимах ZFC и FC, отожженного при 650°C образца Sr50. Красная линия — аппроксимация окрестности перехода в магнитоупорядоченное состояние. (*b*) Петли магнитного гистерезиса, измеренные при температурах 2 и 300 К. На врезке представлены низкополевые фрагменты петель.

Рис. 9. (a) Температурные зависимости намагниченности M(T) отожженного образца Sr33. Красная линия — аппроксимация окрестности перехода в магнитоупорядоченное состояние. (b) Петли магнитного гистерезиса, измеренные при различных температурах.

("паразитного") ферромагнетизма [26]. Действительно, на кривых M(T) наблюдается заметная ферромагнитная составляющая, которая описывается вблизи температуры перехода в магнитоупорядоченное состояние функцией $M(T) \sim (T_N - T)^{\beta}$ со значением $T_N \approx 233$ K для образца Sr50 (рис. 6, *a*) и $T_N \approx 385$ K для образца Sr33 (рис. 7, *a*). В классических коллинеарных антиферромагнетиках температурная зависимость намагниченности проходит через максимум, соответствующий T_N . Происходит это потому, что при повышении температуры антипараллельное упорядочивание спинов постепенно нарушается, и полная намагниченность, в отличие от парамагнетика, увеличивается. Выше T_N антипараллельное упорядочение спинов исчезает, устанавливается спиновый беспорядок. Поэтому при дальнейшем росте температуры, так же как и у парамагнетика, намагниченность начинает убывать. В слабых ферромагнетиках температурная зависимость намагниченности аналогична обычным ферромагнетикам, т.е. монотонно возрастает с понижением температуры, не обнаруживает максимума и исчезает в точке Нееля, как это происходит в наших образцах. Отличие состоит в том, что величина намагниченности не превосходит нескольких процентов от случая, если бы в веществе был ферромагнитный порядок. Наличие ферромагнетизма также подтверждается гистерезисом на кривых M(H), в целом линейных и свойственных антиферромагнетикам (рис. 6, *b* и 7, *b*). В антиферромагнетиках зависимость M(H) в не очень

Sample	Sr50, before annealing	Sr33, before annealing	Sr50, before annealing	Sr33, before annealing
$T_{\rm N},{\rm K}$	233	385	404	580

Таблица 4. Сводные магнитные данные по T_N для всех

образцов, исходных и отожженных в вакууме при 650°С

сильных магнитных полях (сильные магнитные поля разрушают антиферромагнитный порядок) имеет линейный вид. Это находится в хорошем согласии с данными [27].

Сводные данные по $T_{\rm N}$ для всех образцов, исходных и отожженных в вакууме при 650°С, представлены в табл. 4.

Как показано выше, по мере увеличения ионного замещения La³⁺ на Sr²⁺ растет доля Fe⁴⁺ в смеси из ионов Fe⁴⁺ и Fe³⁺, что приводит к росту числа каналов ферромагнитного взаимодействия, обусловленного двойным обменом Fe⁴⁺ – Fe³⁺ [28], и уменьшению числа каналов антиферромагнитного обмена Fe³⁺ – Fe³⁺. Таким образом, рост числа ионов Sr приводит к перераспределению вкладов ферро — (J_F) и антиферромагнитного го (J_{AF}) каналов в результирующий обмен и смещает баланс в сторону ослабления антиферромагнетизма. Это и находит отражение в понижении температуры магнитного упорядочения T_N с 385 K (образец Sr33, рис. 8, *a*) до 233 K (образец Sr50, рис. 6, *a*) с ростом количества Sr.

На рис. 8 и 9 приведены кривые M(T), измеренные в режимах ZFC и FC, и M(H) образцов Sr50 и Sr33 после вакуумного отжига при 650°C. В целом характер этих кривых аналогичен тому, что наблюдалось в исходных образцах. Данные для образца Sr50 взяты из нашей работы [29].

Но при вакуумном отжиге происходят некоторые изменения. Температура T_N , соответствующая точке перегиба и расходимости кривых FC-ZFC заметно превосходит комнатную в образце Sr50 и значительно выше 400 К в образце Sr33 (рис. 9, a). Это означает, что отжиг приводит к существенному возрастанию T_N в Sr50 и Sr33, которые при комнатной температуре (образец Sr50) и при температуре 400 К (образец Sr33) остаются все еще в магнитоупорядоченном состоянии, описываемом вблизи температуры перехода в магнитоупорядоченное состояние функцией $M(T) \sim (T_1 - T)^{eta}$ с $T_{
m N} pprox 404 \, {
m K}$ образца Sr50 (рис. 8, a) и $T_{\rm N} \approx 580\,{\rm K}$ образца Sr33 (рис. 9, a). Этот факт подтверждается наличием петель магнитного гистерезиса при комнатной температуре для образца Sr50 (рис. 8, b) и при температуре 400 К для образца Sr33 (рис. 9, b).

Как указано выше, при вакуумном отжиге в кристаллической решетке происходит два взаимосвязанных процесса: ион кислорода удаляется с образованием вакансии, валентное состояние ионов железа изменяется с 4+ на 3+. С ростом температуры отжига происходит перераспределение вкладов ионов Fe^{3+} с различным

локальным окружением. Вклад ионов Fe³⁺ со всеми шестью обменными связями Fe³⁺ $-O^{2-}-Fe^{3+}$ значительно увеличивается для отожженных при 650°С в вакууме образцов по сравнению с исходными образцами: с 12% до ~ 60% для образца Sr50 и с 18% до 70% для образца Sr33. Это приводит к перераспределению вкладов ферро — (J_F) и антиферромагнитного (J_{AF}) каналов в результирующий обмен, смещению баланса в сторону усиления антиферромагнетизма и заметному росту температуры Нееля T_N . Уменьшаются ширины петель магнитного гистерезиса и величины намагниченности (рис. 8, *b* и 9, *b*).

4. Заключение

Анализ полученных экспериментальных данных по замещенным ферритам лантана $La_{1-x}Sr_xFeO_{3-y}$ (x = 0.33, 0.50) позволяет сделать следующие выводы.

— С ростом концентрации Sr как в исходных, так и в отожженных при 650°С образцах уменьшается объем элементарной ячейки, но в отожженных образцах это уменьшение слабее.

— Число ионов Fe⁴⁺ в исходных образцах растет линейно с увеличением концентрации Sr.

— С ростом концентрации Sr число кислородных вакансий в отожженных при 650°С образцах растет быстрее, чем в исходных образцах.

— В исходных образцах большая часть ионов Fe³⁺ (~ 40% для образца Sr33 и ~ 35% для образца Sr50) имеет в своем локальном окружении один или два дефекта — оборванную или ослабленную связь. В отожженных при 650°С образцах преобладают ионы Fe³⁺ (~ 70% для Sr33 и ~ 60% для Sr50), имеющие октаэдрическое кислородное окружение, т.е. все шесть сверхобменных связей.

— Из магнитных измерений определены температуры Нееля $T_{\rm N}$. Показано, что по сравнению с исходными образцами перераспределение при вакуумном отжиге вкладов ионов Fe³⁺ с различным локальным окружением приводит к изменению соотношения $J_F/J_{\rm AF}$, смещению баланса в сторону усиления антиферромагнетизма и заметному росту температуры Нееля $T_{\rm N}$, а также уменьшению ширины петель магнитного гистерезиса и величины намагниченности.

 Магнитные измерения показывают хорошую корреляцию с рентгеновскими и мессбауэровскими данными.

Благодарности

Авторы благодарны Центру коллективного пользования научным оборудованием ИФТТ РАН за предоставленные экспериментальные возможности для проведения структурных исследований.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках Государственных заданий Федерального исследовательского центра проблем химической физики и медицинской химии РАН (рег. номер 124013100858-3) и Института физики твердого тела им. Ю.А. Осипьяна РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S. Petrovic, A. Terlecki, L. Karanovic, P. Kirilov-Stefanov, M. Zduji, V. Dondur, D. Paneva, I. Mitov, V. Rakic. Appl. Catal. B Environ **79**, 186 (2008).
- J. Faye, A. Bayleta, M. Trentesauxb, S. Royera, F. Dumeignil, D. Duprez, S. Valange. Appl. Catal. B Environ 126, 134 (2012).
- [3] E.K. Abdel-Khalek, D.A. Rayan. Ahmed. A. Askar, M.I.A. Abdel Maksoud, H.H. El-Bahnasawy. J. Sol-Gel Sci. and Technology 97, 27 (2021).
- [4] J.B. Yang, W.B. Yelon, W.J. James, Z. Chu, M. Kornecki, Y.X. Xie, X.D. Zhou, H.U. Anderson, Amish G. Joshi, S.K. Malik. Phys. Rev. B 66, 184415 (2002).
- [5] В.Д. Седых, О.Г. Рыбченко, А.Н. Некрасов, И.Е. Конева, В.И. Кулаков. ФТТ **61**, *6*, 1162 (2019).
- [6] В.Д. Седых, О.Г. Рыбченко, Э.В. Суворов, А.И. Иванов, В.И. Кулаков. ФТТ 62, 10, 1698 (2020).
- [7] В.Д. Седых, О.Г. Рыбченко, Н.В. Барковский, А.И. Иванов, В.И. Кулаков. ФТТ 63, 10, 1648 (2021).
- [8] O.I. Barkalov, S.V. Zaitsev, V.D. Sedykh. Solid State Commun. 354, 114912 (2022).
- [9] V. Sedykh, O. Rybchenko, V. Rusakov, S. Zaitsev, O. Barkalov, E. Postnova, T. Gubaidulina, D. Pchelina, V. Kulakov. J. Phys. Chem. Solids 171, 111001 (2022).
- [10] В.Д. Седых, В.С. Русаков, Т.В. Губайдулина. ФТТ 65, 4, 629 (2023).
- [11] В.Д. Седых, В.С. Русаков, Т.В. Губайдулина, О.Г. Рыбченко, В.И. Кулаков. ФММ 124, 2, 161 (2023).
- [12] V. Sedykh, V. Rusakov, O. Rybchenko, A. Gapochka, K. Gavrilicheva, O. Barkalov, S. Zaitsev, V. Kulakov. Ceramics Intern. 49, 15, 25640 (2023).
- [13] J.B. Goodenough. In Progress in Solid State Chemistry, edited by H. Reiss, Pergamon, London (1971), Vol. 5, p. 145.
- [14] J.B. Goodenough. In Magnetism and Chemical Bond, edited by F. Albert Cotton, Interscience, London (1963), Vol. 1, p. 154.
- [15] J. Grenier, N. Ea, M. Pouchard, M.M. Abou-Sekkina. Mater. Res. Bull. 19, 1301 (1984).
- [16] P.D. Battle, N.C. Gibb, S. Nixon. J. Solid State Chem. 79, 75 (1989).
- [17] M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc., 1489, 178 (2012).
- [18] R.D. Shannon. Acta Cryst. A32, 767 (1976).
- [19] P.D. Battle, T.C. Gibb, S. Nixon. J. Solid State Chem. 77, 124 (1988).
- [20] G. Li, L. Li, M. Zhao. Phys. Stat. Sol. B 197, 165 (1996).

- [21] Y. Shin, K.-Y. Doh, S.H. Kim, J.H. Lee, H. Bae, S.-J. Song, D. Lee, J. Mater. Chem. A 8, 4784 (2020).
- [22] G.A. Sawatzky, F. van der Woude. J. Phys. Colloq. 35, 47 (1974).
- [23] В.И. Николаев, В.С. Русаков. Мессбауэровские исследования ферритов, — М: Изд-во Моск. Ун-та, Москва (1985). 224 с.
- [24] T.M. Rearick, G.L. Catchen, J.M. Adams. Phys. Rev. B 48 (1993) 224–238.
- [25] P.K. Gallagher, J.B. MacChesney, D.N.E. Buchanan. J. Chem. Phys. 41 (1964) 2429–2434.
- [26] J. Blasco, B. Aznar, J. García, G. Subias, J. Herrero-Martin, J. Stankiewicz. Phys. Rev. B 77 (5), (2008).
- [27] U. Shimony, J.M. Knudsen. Phys. Rev. 144 (1), 361 (1966).
- [28] I. Zvereva, T. Pavlova, V. Pantchuk, V. Semenov, Y. Breard, J. Choisnet. Chimica Techno Acta 1, 46 (2016).
- [29] А.И. Дмитриев, С.В. Зайцев, М.С. Дмитриева, О.Г. Рыбченко, В.Д. Седых. ФТТ 66, 3, 386 (2024).

Редактор К.В. Емцев