Влияние начальных условий в камере низкого давления на степень расширения вскипающей струи жидкого азота

© Р.Х. Болотнова¹, В.А. Коробчинская^{1,2}, Э.Ф. Гайнуллина^{1,2}

¹ Институт механики им. Р.Р. Мавлютова — обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук, Уфа, Россия

² Уфимский университет науки и технологий, Уфа, Россия E-mail: buzina_lera@mail.ru

Поступило в Редакцию 27 апреля 2024 г. В окончательной редакции 28 июня 2024 г. Принято к публикации 30 октября 2024 г.

> Исследована динамика вскипания струи криогенного азота при истечении через тонкое коническое сопло в вакуумную камеру из сосуда высокого давления. Для описания процесса предложена пространственная осесимметричная двухфазная модель парожидкостной смеси в двухтемпературном, двухскоростном, однодавленческом приближениях, учитывающая неравновесные процессы испарения и конденсации. Предполагается, что скорость массообмена жидкость-пар зависит от числа и радиуса пузырьков, степени перегрева по температуре, теплоты парообразования и теплопроводности. Рассмотрены режимы формирования полей скоростей струйного потока и получены количественные оценки величины угла распыления в струе в зависимости от начального давления в вакуумной камере. Достоверность полученных результатов оценена путем сопоставления с экспериментальными данными.

> Ключевые слова: жидкий азот, вскипающая струя, криогенные температуры, вакуумная камера, численное моделирование.

DOI: 10.61011/PJTF.2024.23.59393.6455k

Проблемы, связанные с надежностью функционирования и снижением стоимости реактивных двигателей космических аппаратов, в последнее время становятся весьма значимыми и диктуют необходимость проведения экспериментальных и теоретических исследований, направленных на изучение режимов высокоскоростного истечения криогенных вскипающих жидкостей из сопел в вакуумную атмосферу.

В представленном исследовании приведен анализ влияния изменения начального давления в вакуумной системе на процесс формирования расширяющихся струй жидкого азота при его распылении из тонкого цилиндрического сопла на основе экспериментальных данных [1]. В наших предыдущих публикациях [2,3], продолжением которых является настоящая работа, изучались различные режимы истечения криогенного жидкого азота в зависимости от степени перегрева.

В экспериментах [1], выбранных для исследования, начальные температура и давление в сосуде высокого давления были следующими: $T_{inj} = 82.5$ K, $p_{inj} = 4 \cdot 10^5$ Ра. Противодавление в камере низкого давления p_c и степень перегрева $R_p = p_s(T_{inj})/p_c$ (p_s — давление насыщения) для моделируемых экспериментов приведены в табл. 1. Геометрические размеры исследуемой задачи, выбранные для численного моделирования в соответствии с данными [1], сведены в табл. 2.

Для решения поставленной задачи разработана двухфазная модель парожидкостной смеси в двухтемпературном, однодавленческом, двухскоростном приближениях с учетом контактного теплообмена и неравновесных массообменных процессов испарения и конденсации [4,5]. Система модельных уравнений приведена в трехмерной декартовой системе координат: уравнения сохранения массы *i*-й фазы

$$\frac{\partial(\alpha_i \rho_i)}{\partial t} + \operatorname{div}(\alpha_i \rho_i \mathbf{v}_i) = J_{ij}, \qquad (1)$$

уравнения сохранения импульса і-й фазы

$$\frac{\partial(\alpha_i \rho_i \mathbf{v}_i)}{\partial t} + \operatorname{div}(\alpha_i \rho_i \mathbf{v}_i \mathbf{v}_i)$$

= $-\alpha_i \nabla p + \operatorname{div}(\alpha_i \tau_i) + \mathbf{F}_{i,drag} + \mathbf{F}_{i,vm} + J_{ij} \mathbf{v}_i,$ (2)

уравнения сохранения полной энергии і-й фазы

$$\begin{aligned} \frac{\partial(\alpha_i\rho_iE_i)}{\partial t} + \operatorname{div}(\alpha_i\rho_iE_i\mathbf{v}_i) &= -p\frac{\partial\alpha_i}{\partial t} - \operatorname{div}(\alpha_i\mathbf{v}_ip) \\ + \operatorname{div}(\alpha_i\gamma_{i,eff}\nabla h_i) + K_{ht}(T_j - T_i) + \operatorname{div}(\alpha_i\mathbf{v}_i\tau_i) + l_sJ_{ij}. \end{aligned}$$
(3)

Сила присоединенных масс имеет вид

$$\mathbf{F}_{i,\nu m} = \mathbf{0.5}\alpha_l \rho_g \left(\frac{d_i \mathbf{v}_i}{dt} - \frac{d_j \mathbf{v}_j}{dt}\right).$$

Межфазное сопротивление описано моделью Шиллера-Науманна

$$\mathbf{F}_{i,drag} = \frac{3}{4} \alpha_l C_D \frac{\rho_g}{d_{l0}} (\mathbf{v}_i - \mathbf{v}_j) |\mathbf{v}_i - \mathbf{v}_j|.$$

Рис. 1. Сравнение экспериментальных фотографий [1] (a, c) и расчетных распределений интенсивности и векторного поля направления скоростей (b, d) для струи жидкого азота при t = 120 ms. $R_{p2} = 7.0$ (a, b) и $R_{p3} = 52.3$ (c, d).

Таблица 1. Начальные данные моделируемых экспериментов

Номер эксперимента	Противодавление $p_c, 10^5$ Ра	Степень перегрева <i>R</i> _p
1	0.56	3.2
2	0.256	7.0
3	0.036	52.3

В уравнениях (1)—(3) использовались следующие обозначения: ρ_i — плотность, T_i — температура, α_i — объемное содержание, \mathbf{v}_i — скорость, J_{ij} — скорость массообмена между *i*-й и *j*-й фазами, *p* — давление, $\tau_i = \mu_i (\nabla \mathbf{v}_i + \nabla \mathbf{v}_i^T) - \frac{2}{3} (\mu_i \operatorname{div} \mathbf{v}_i) \mathbf{I}$ — тензор вязких напряжений, \mathbf{I} — единичный тензор, μ_i — динамическая вязкость, $E_i = e_i + K_i$ — полная энергия в виде суммы внутренней и кинетической энергий, $\gamma_{i,eff}$ — эффективная температуропроводность, h_i — энтальпия, $\mathbf{v} = \alpha_l \mathbf{v}_l + \alpha_g \mathbf{v}_g$ — скорость парожидкостной смеси, $K_{ht} = \frac{\kappa_g}{d_{l0}}$ Nu — коэффициент теплообмена, κ_g — теплопроводность газа, Nu — число Нуссельта, l_s — теплота парообразования/конденсации, d_{l0} — диаметр капель. Нижние индексы i, j $(i \neq j)$ соответствуют жидкой (l) или газовой (g) фазе.

Термодинамические свойства газовой фазы азота описываются уравнением состояния Пенга–Робинсона [6].

Размер	Камера высокого	Промежуточный	Коническое	Вакуумная
	давления	трубопровод	сопло	камера
Длина x, m Радиус y, m	0.136 0.034	$0.12 \\ 7 \cdot 10^{-3}$	$0.03 \\ 0.5 \cdot 10^{-3}$	0.225 0.15

Таблица 2. Геометрические размеры расчетной установки

Свойства жидкого азота описываются по аналогии с [3,7,8] линейным по температуре и плотности уравнением состояния.

Скорость испарения J_{lg} в соответствии с [9] предполагается зависящей от числа *n* и радиуса *a* пузырьков, температуры насыщения $T_s(p)$, теплоты парообразования $l_s(T)$, коэффициента теплопроводности λ_l и числа Нуссельта Nu:

$$J_{lg} = 2\pi a n \operatorname{Nu} \lambda_l (T - T_s(p)) / l_s(T).$$
(4)

Фазовый переход жидкость-пар происходит в условиях неравновесного перегретого состояния, когда температура среды превышает температуру насыщения [3,9]: $T > T_s(p) + \Delta T_s$, где ΔT_s — степень перегрева по температуре.

Компьютерная реализация предложенной модели парожидкостной смеси, определяемой уравнениями (1)-(4), проводилась в пакете вычислительной гидродинамики [10] с применением разработанного авторами решателя. На внутренних границах расчетной области применяются условия нулевых нормальных составляющих скоростей фаз ($v_{in} = 0$) в соответствии с режимом скольжения потока.

Результаты численного моделирования и соответствующие им экспериментальные данные [1] представлены на рис. 1, 2.

На рис. 1, *a*, *c* представлены экспериментальные фотографии распыления струи жидкого азота в момент времени t = 120 ms для начальных температуры и давления впрыска $T_{inj} = 82.5$ K, $p_{inj} = 4 \cdot 10^5$ Ра для степеней перегрева $R_{p2} = 7.0$ (*a*) и $R_{p3} = 52.3$ (*c*). На рис. 1, *b*, *d* приведены расчетные распределения скоростей в виде цветового спектра и поля векторов скоростей (цветной вариант рисунка представлен в электронной версии статьи), определяющих направления потока, полученные в условиях, аналогичных эксперименту [1] (см. рис. 1, *a* и *c* соответственно).

На рис. 1, *b*, *d* можно видеть сформированные на момент времени 120 ms вихревые зоны. При степени перегрева $R_{p2} = 7.0$ (рис. 1, *a*) формируется множество тороидальных вихрей около оси симметрии и вдоль тыльной границы вакуумной камеры. В рассматриваемый момент времени показано отражение струи от тыльной границы вплоть до достижения боковой границы камеры. Скорость струи на осевом участке составляет ~ 22 m/s. При достижении боковой границы ее скорость снижается до ~ 5 m/s. Струя достигает тыльной поверхности вакуумной камеры при t = 50 ms, а боковой

Рис. 2. Зависимость угла распыления θ от расстояния x/D для степеней перегрева $R_{p1}(1)$, $R_{p2}(2)$ и $R_{p3}(3)$. Символы — экспериментальные данные [1], линии — расчет.

границы — в момент времени t = 120 ms. В этом случае струйный поток локализуется вдоль оси симметрии и на тыльной поверхности (рис. 1, *b*).

Полученные численные результаты при высокой степени перегрева $R_{p3} = 52.3$ (рис. 1, *d*) показали принципиальное изменение характера формирования струйного течения по сравнению с режимом истечения при $R_{p2} = 7.0$. Струя достигает тыльной поверхности вакуумной камеры в момент времени t = 25 ms, а боковой границы — в момент времени t = 60 ms. В этом случае скорость потока на осевом участке составляет ~ 30 m/s, при достижении боковой границы ~ 10 m/s и на лицевой границе ~ 5 m/s.

В расчетах при $R_{p3} = 52.3$ наблюдается формирование одного большого тороидального вихря, охватывающего практически всю вакуумную камеру. Направление поля скоростей формирующегося парокапельного потока показано на рис. 1, *d*. Здесь особо важно отметить принципиальное отличие процесса формирования максимального угла распыления по сравнению с вариантом для $R_{p2} = 7.0$ (рис. 1, *b*). При $R_{p3} = 52.3$ угол распыления формируется за счет течения струйного потока вдоль оси симметрии, далее по тыльной и боковой границам, затем вдоль лицевой границы и далее по направлению основной струи, вытекающей из сопла. На момент времени 120 ms максимальный угол распыления струйного по-

тока, который иллюстрируется на рис. 1, *d* приведенным векторным полем направления скоростей.

На рис. 2 показано сравнение экспериментальных точек и расчетных зависимостей угла распыления в сечениях, удаленных от сопла на расстояния x/D, при степенях перегрева $R_{p1} = 3.2$, $R_{p2} = 7.0$, $R_{p3} = 52.3$. Углы распыления θ в экспериментах [1] получены с помощью алгоритма постобработки теневых изображений сформированной струи в момент времени t = 120 ms.

Таким образом, приведенные в настоящей работе исследования зависимостей угла распыления струи жидкого азота от степени перегрева, полученные с помощью численной реализации модели (1)-(4), показали, что наибольший угол распыления имеет место в ближней зоне сопла (x/D = 1). Повышение степени перегрева приводит к увеличению угла раскрытия струи. По мере удаления от сопла угол распыления уменьшается, что согласуется с экспериментальными данными [1].

В результате расчетов были выявлены особенности формирования направлений скоростей парокапельного потока при степени перегрева $R_{p3} = 52.3$, обусловленные возникновением возвратных течений, образующих угол распыления струи $\theta_{R_{p3}}^{calc} \approx 180^\circ$, фиксируемый в экспериментах [1] (рис. 1, *с* и 2).

Финансирование работы

Работа выполнена за счет гранта Российского научного фонда № 23-29-00309 (https://rscf.ru/project/23-29-00309/).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Rees, H. Salzmann, J. Sender, M. Oschwald, in 8th Eur. Conf. for aeronautics and space sciences (EUCASS) (Madrid, Spain, 2019). DOI: 10.13009/EUCASS2019-418
- [2] R.Kh. Bolotnova, V.A. Korobchinskaya, E.F. Gainullina, Lobachevskii J. Math., 44 (5), 1579 (2023).
 DOI: 10.1134/S1995080223050104
- [3] Р.Х. Болотнова, В.А. Коробчинская, Э.Ф. Гайнуллина, Письма в ЖТФ, 49 (24), 46 (2023).
 DOI: 10.61011/PJTF.2023.24.56872.107A [R.Kh. Bolotnova, V.A. Korobchinskaya, E.F. Gainullina, Tech. Phys. Lett., 49 (12), 108 (2023). DOI: 10.61011/TPL.2023.12.57601.107A].
- [4] Р.И. Нигматулин, Динамика многофазных сред (Наука, М., 1987), ч. 1. [R.I. Nigmatulin, Dynamics of multiphase media (Hemisphere, N.Y., 1990).].
- [5] Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. Гидродинамика (Наука, М., 1986), ч. 6. [L.D. Landau, E.M. Lifshitz, Course of theoretical physics. Fluid mechanics (Pergamon, N.Y., 1987).].
- [6] D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundamen., 15 (1), 59 (1976). DOI: 10.1021/i160057a011

- [7] Р.И. Нигматулин, Р.Х. Болотнова, ТВТ, 49 (2), 310 (2011).
 [R.I. Nigmatulin, R.Kh. Bolotnova, High Temp., 49 (2), 303 (2011). DOI: 10.1134/S0018151X11020106].
- [8] В.В. Сычев, А.А. Вассерман, А.Д. Козлов, Г.А. Спиридонов, В.А. Цымарный, *Термодинамические свойства азота* (Изд-во стандартов, М., 1977).
- [9] Р.Х. Болотнова, В.А. Бузина, М.Н. Галимзянов, В.Ш. Шагапов, Теплофизика и аэромеханика, **19** (6), 719 (2012).
- [10] OpenFOAM. The open source computational fluid dynamics (CFD) toolbox [Электронный ресурс]. http://www.openfoam.com