05

Возможность повышения чувствительности к вращению с помощью постоянного магнитного поля в кольцевом лазере на кристалле Nd: YVO₄

© Е.Г. Ларионцев, В.В. Фирсов, С.Н. Чекина

Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына Московского государственного университета имени М.В. Ломоносова (НИИЯФ МГУ), Москва, Россия

e-mail: e.lariontsev@yahoo.com

Поступила в редакцию 19.01.2024 г. В окончательной редакции 14.10.2024 г. Принята к публикации 21.10.2024 г.

> Кольцевой лазер на кристалле Nd:YVO₄, работающий в режиме синхронизации частот встречных волн, имеет неограниченную область захвата. В настоящей работе в таком лазере при введении внутрь резонатора управляющего элемента, состоящего из четвертьволновой пластинки и магнитоактивного кристалла во внешнем магнитном поле, получен автомодуляционный режим генерации. В этом режиме частота модуляции интенсивности излучения пропорциональна фазовой невзаимности кольцевого резонатора, вызываемой, в частности, вращением. Показано, что спектр излучения в автомодуляционном режиме более узкий, чем в режиме синхронизации частот встречных волн.

> Ключевые слова: твердотельный кольцевой лазер, синхронизация частот встречных волн, автомодуляционный режим генерации, фазовая оптическая невзаимность.

DOI: 10.61011/OS.2024.10.59417.5887-24

1. Введение

Одно из направлений в лазерной гироскопии связано с созданием лазерных гироскопов (ЛГ) на основе твердотельного кольцевого лазера (ТКЛ). В исследованиях по ТКЛ, ориентированных на применение в гироскопии, большинство работ относится к лазерам на кристалле иттрий-алюминиевого граната (YAG). В ТКЛ на Nd:YAG, работающем в режиме биений встречных волн, были получены частотные характеристики, близкие к достигнутым в высокоточных газовых ЛГ [1–3].

Кольцевые лазеры на кристалле ванадата иттрия YVO_4 можно рассматривать как одну из новых перспективных возможностей для создания ЛГ на основе ТКЛ. Сечение лазерного перехода на длине волны $1.06\,\mu m$ в кристалле Nd:YVO₄ в 4.6 раза больше, чем в Nd:YAG, что позволяет снижать пороги генерации и уменьшать длину активной области.

В работах [4,5] в ТКЛ на Nd:YVO₄ была экспериментально исследована двунаправленная генерация в режиме пассивной синхронизации аксиальных мод. Синхронизация мод (СМ) возникала при введении в резонатор нелинейного поглотителя. В режиме СМ внутри кольцевого резонатора во встречных направлениях распространяются ультракороткие импульсы света, которые перекрываются внутри нелинейного поглотителя. За счет обратного рассеяния в поглотителе возникала сильная связь встречных волн и большая область захвата (порядка 10 deg/s). Вне области захвата наблюдался режим биений частот встречных волн.

Экспериментальные исследования двунаправленной генерации в ТКЛ на Nd:YVO4 в случае свободной генерации были проведены в работах [6,7]. В [6] наблюдались следующие автомодуляционные режимы генерации: 1) режим противофазной модуляции интенсивностей встречных волн, 2) режим синфазной модуляции интенсивностей встречных волн и 3) режим динамического хаоса. В работе [7] экспериментально исследован стационарный режим синхронизации частот встречных волн в ТКЛ на Nd:YVO4. Было показано, что с ростом фазовой невзаимности в режиме синхронизации происходит подавление одной из встречных волн, и этот режим не переходит в режим биений. В [7] наблюдались также автомодуляционные режимы генерации, однако в отличие от стационарного режима синхронизации частот встречных волн они существовали в течение небольшого промежутка времени (порядка минуты), а затем ТКЛ снова возвращался в стационарный режим синхронизации встречных волн.

В настоящей работе предложена и экспериментально исследована новая возможность управления (с помощью постоянного магнитного поля) характеристиками ТКЛ на Nd:YVO₄, работающем в режиме синхронизации частот встречных волн.

2. Экспериментальная установка

Исследуемый ТКЛ с плоским четырех-зеркальным резонатором показан схематически на рис. 1. Длина периметра кольцевого резонатора равна $L_c = 90$ cm. Зеркала

Рис. 1. Схема кольцевого лазера. М1, М2 — плоские зеркала, М3 — сферическое зеркало с радиусом кривизны R = 50 сm, М4 — кристалл ванадата иттрия Nd:YVO₄ с напыленным на его поверхности дихроичным зеркалом, Ритр — луч накачки, Р1, Р2 — фотоприемники лазерного излучения, Р — фотоприемник, регистрирующий сигнал смешения двух встречных волн, М, ВS — зеркало и светоделительная пластина для смешения волн.

резонатора M1, M2 являются плоскими, M3 — сферическое зеркало с радиусом кривизны R = 50 сm. Четвертое дихроичное зеркало M4 напылено на грань лазерного кристалла ванадата иттрия Nd:YVO₄, имеющего форму прямоугольной пластины размером $5 \times 5 \times 2.5$ mm, длина активного элемента равна 2.5 mm. Накачка осуществляется полупроводниковым лазерным диодом Ритр, излучение которого проходит в резонатор через дихроичное зеркало M4 и полностью поглощается на длине активного элемента.

Такая схема, в которой одно из зеркал резонатора напылено на поверхность активного элемента, создает ряд удобств. Во-первых, пространство внутри резонатора не занято активной средой и остается больше места для размещения там других элементов (например, управляющего элемента CE). Во-вторых, излучение накачки поглощается в пластине M4 и не попадает внутрь резонатора. В-третьих, пучки встречных волн, генерируемых внутри резонатора, падают на поверхность активного элемента под углом, отличным от 90°, что уменьшает связь встречных волн через обратное рассеяние на этой поверхности.

Лазерное излучение, генерируемое в исследуемом ТКЛ, имеет линейную поляризацию, направленную под углом 90° к плоскости резонатора. Пучки встречных волн выводятся из кольцевого резонатора через зеркало М2 и регистрируются фотоприемниками Р1, Р2. На фотоприемник Р с помощью зеркала М и светоделительной пластины ВS подается сигнал, пропорциональный сумме полей встречных волн $E_1 + E_2$. На выходе этого фотоприемника регистрируется сигнал фотосмешения $I_s = |E_1 + E_2|^2$.

Управление характеристиками ТКЛ с помощью магнитного поля осуществляется следующим образом. Внутрь резонатора между зеркалами М4 и М1 (рис. 1) помещен управляющий элемент CE, схема которого

Рис. 2. Схема управляющего элемента. $\lambda/4$ — четвертьволновая пластинка, H — магнитоактивный кристалл во внешнем магнитном поле.

показана на рис. 2. Этот элемент состоит из четвертьволновой пластинки λ/4 и кристалла германата висмута Ві₄Ge₃O₁₂ [8], обладающего высокой магнитооптической активностью. С помощью соленоида в этом кристалле создается магнитное поле Н. Как показали проведенные в настоящей работе исследования, важное значение имеет ориентация фазовой пластинки, и чтобы ее указать, введем трехмерную систему координат хуг. Ось г совпадает с направлением распространения лазерного пучка в области между пластиной и кристаллом германата висмута, а ось у перпендикулярна плоскости кольцевого резонатора. Проведенные исследования показали, что при ориентации оптической оси пластинки λ/4 параллельно оси у используемый СЕ не оказывает влияния ни на интенсивности генерируемых встречных волн, ни на поляризацию излучения, которая близка к линейной и направлена по оси у. Приведенные ниже результаты, демонстрирующие эффективное воздействие СЕ на генерацию ТКЛ, получены при повороте оптической оси пластинки $\lambda/4$ на угол $\varphi = \pi/4$ в плоскости xy.

3. Экспериментальные результаты

При отсутствии управляющего элемента СЕ в исследуемом ТКЛ наблюдается стационарный режим синхронизации частот встречных волн. В этом режиме интенсивности встречных волн постоянны (не зависят от времени), а оптические частоты полей оказываются равными. Как показано в работе [7], при увеличении фазовой невзаимности кольцевого резонатора происходит подавление одной из встречных волн, но режим синхронизации сохраняется и не переходит в режим биений.

Поляризация излучения при отсутствии СЕ является линейной (отношение осей поляризационного эллипса более 100) и ортогональна к плоскости резонатора. При наличии СЕ поляризация становится эллиптической с отношением осей, равным 6. Поляризационный эллипс вытянут в направлении, ортогональном к плоскости резонатора.

В области токов в катушке соленоида $0 < J < J_c$, где $J_c = 0.72$ A, ТКЛ с СЕ внутри резонатора работает в стационарном режиме синхронизации частот встречных

Рис. 3. Осциллограммы интенсивностей встречных волн I_1 , I_2 в режиме синхронизации частот встречных волн при токах в катушке соленоида J = 0 (*a*) и $J_c = 0.72$ A (*b*).

волн. На рис. З показаны осциллограммы интенсивностей встречных волн I_1 , I_2 , регистрируемые фотоприемниками Р1 и Р2, при токе в катушке соленоида J = 0(рис. 3, *a*) и $J_c = 0.72$ А (рис. 3, *b*). Эти результаты получены при превышении накачки *P* над пороговым уровнем $P_{\rm th}$, равном $\eta = P/P_{\rm th} - 1 = 0.05$.

Как видно из рис. 3, в режиме синхронизации частот встречных волн интенсивности I_1, I_2 не зависят от времени. С увеличением тока J происходит подавление одной из волн. В области токов $0 < J < J_c$ отсутствуют биения частот встречных волн. Внутри зоны захвата, как показано в [9], разность фаз встречных волн зависит от угловой скорости вращения, что позволяет измерять угловые скорости в этой области. Однако в настоящей работе генерация не является одномодовой, что существенно осложняет использование этой возможности. Нами использован другой путь получения информации о скорости вращения, основанный на измерении частоты автомодуляционных колебаний, возбуждаемых с помощью CE.

При малых превышениях накачки над порогом $0.02 < \eta < 0.1$ в режиме синхронизации возбуждаются

Рис. 4. Спектры межмодовых биений интенсивности излучения S(f) в режиме синхронизации частот встречных волн (a) и в автомодуляционном режиме (b).

три продольные моды. На рис. 4, *а* показаны спектры межмодовых биений S(f), поясняющие наличие трех продольных мод в этом режиме. Частота межмодовых биений в исследуемом ТКЛ равна c/L = 315 MHz.

В области значений тока в катушке соленоида 0.72 A < J < 1.9 A режим синхронизации частот встречных волн оказывается неустойчивым, и в исследуемом ТКЛ возникает автомодуляционный режим. Характерные осциллограммы интенсивностей встречных волн I_1, I_2 и сигнала фотосмешения $I_s = |E_1 + E_2|^2$ в автомодуляционном режиме показаны на рис. 5.

Как видно из рис. 5, в автомодуляционном режиме имеет место синусоидальная модуляция интенсивностей встречных волн I_1, I_2 . Глубина модуляции в сигнале фотосмешения I_s имеет значительно меньшую величину, чем в интенсивностях. При переходе к автомодуляционному режиму сужается спектр генерации. Как видно из рис. 4, при $\eta = 0.05$ трехмодовая генерация в режиме синхронизации частот встречных волн сменяется на двухмодовую в автомодуляционном режиме.

Рис. 5. Осциллограммы интенсивностей встречных волн I_1, I_2 и сигнала фотосмешения I_s в автомодуляционном режиме генерации.

Рис. 6. Зависимость частоты автомодуляции ω_m от тока в катушке соленоида *J*.

Проведенные исследования показали, что частота автомодуляционных колебаний ω_m зависит от тока в катушке соленоида *J*. Эта зависимость, изображенная на рис. 6, близка к линейной.

В области токов в катушке соленоида J > 1.7 А в ТКЛ снова устанавливается режим синхронизации частот встречных волн.

4. Обсуждение результатов

Рассмотрим качественно взаимодействие встречных волн в ТКЛ. В режиме синхронизации частот встречных волн частоты встречных волн оказываются равными. В поле двух встречных волн, имеющих равные частоты, инверсная населенность выжигается пространственно неоднородно и возникают периодические решетки инверсной населенности с периодом $\lambda/4$. В результате

66 Оптика и спектроскопия, 2024, том 132, вып. 10

в ТКЛ из-за брэгговских отражений на этих решетках коэффициенты усиления для встречных волн становятся неравными: волна с большей интенсивностью имеет больший коэффициент усиления. Такое неравенство коэффициентов усиления должно было бы привести к подавлению одной из встречных волн. Однако, как было показано в [10], этому может воспрепятствовать связь встречных волн через обратное рассеяние внутри резонатора, которая стабилизирует двунаправленную генерацию и может приводить к установлению стационарного режима синхронизации частот встречных волн. При отсутствии управляющего элемента СЕ этот режим генерации сохраняется в исследуемом ТКЛ при увеличении фазовой невзаимности кольцевого резонатора [7].

Как показали проведенные ранее исследования [11,12], в области параметров, где связь через обратное рассеяние недостаточна для обеспечения устойчивости двунаправленной генерации, в ТКЛ может возбуждаться одномодовый автомодуляционный режим (АР) первого рода. Наблюдавшийся в настоящей работе АР похож на АР первого рода. В обоих режимах имеет место синусоидальная, близкая к противофазной автомодуляция интенсивностей встречных волн. Однако есть и существенное различие. При близких по величине средних значениях интенсивностей встречных волн в АР первого рода наблюдается стопроцентная глубина автомодуляции интенсивностей. В исследуемом ТКЛ, напротив, при почти равных средних значениях интенсивностей I_1, I_2 глубина модуляции интенсивностей оказывается малой (рис. 5). Это противоречие можно устранить, учитывая, что в наблюдавшемся в настоящей работе АР имеет место двухмодовая генерация. Сделаем предположение, что одна из двух мод (первая) генерирует в режиме синхронизации встречных волн, а вторая в АР первого рода. В этом случае возможна наблюдавшаяся экспериментально малая глубина модуляции при близких по величине средних значениях интенсивностей, если интенсивность второй моды значительно меньше, чем первой.

Частота противофазной автомодуляции интенсивностей встречных волн в AP первого рода следующим образом зависит от фазовой невзаимности кольцевого резонатора Ω [11,12]:

$$\omega_m = \sqrt{\omega_m(0)^2 + \Omega^2},\tag{1}$$

где $\omega_m(0)$ — значение частоты автомодуляции при отсутствии фазовой невзаимности, $\Omega = 0$. Близкая к линейной зависимость частоты автомодуляции от Ω получается при $\Omega \gg \omega_m(0)$.

При увеличении фазовой оптической невзаимности Ω в ТКЛ происходит переход АР первого рода в стационарный режим синхронизации частот встречных волн [13]. Это согласуется с наблюдавшимся в настоящей работе переходом АР в режим синхронизации при большой фазовой невзаимности.

В проводившихся в настоящей работе экспериментах фазовая невзаимность Ω изменялась с помощью магнитного поля за счет эффекта Фарадея. Величину Ω можно также изменять с помощью вращения за счет эффекта Саньяка [14,15]. Таким образом, в частоте автомодуляционных колебаний ω_m содержится информация об угловой скорости вращения. Следует отметить, что в схеме резонатора ТКЛ, близкой к изображенной на рис. 1, эффективная площадь ее замкнутого контура, составленного двумя треугольниками с противоположным ходом пучков, близка к нулю. В этом случае оптическая невзаимность, вызываемая вращением, также оказывается близкой к нулю. Для повышения чувствительности к вращению нужно модифицировать используемую схему кольцевого резонатора так, чтобы площади треугольников с противоположным ходом пучков существенно различались между собой.

5. Заключение

В ТКЛ на кристалле Nd:YVO₄, работающем в режиме синхронизации частот встречных волн, при использовании управляющего элемента CE получен AP с близкой к линейной зависимостью частоты автомодуляции от фазовой невзаимности резонатора Ω . При использовании CE поляризация излучения изменяется от линейной к эллиптической. Спектр излучения в AP оказывается более узким, чем в режиме синхронизации частот встречных волн.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S. Schwartz, G. Feugnet, E.G. Lariontsev, J.-P. Pocholle. Phys. Rev. A, 76, 023807 (2007).
- [2] S. Schwartz, F. Gutty, G. Feugnet, Ph. Bouyer, J.-P. Pocholle. Phys. Rev. Lett., 100, 183901 (2008).
- [3] S. Schwartz, F. Gutty, G. Feugnet, E. Loil, J.-P. Pocholle. Opt. Lett., 34, 3884 (2009).
- [4] Y. Liu, L. Sun, H. Qiu, Y. Wang, Q. Tian, X. Ma. Laser Phys. Lett., 4, 187 (2007).
- [5] Z.Q. Cai, J.Q. Yao, P. Wang, Y.G. Wang, Z.G. Zhang. Chinese Phys. Lett., 24, 1270 (2007).
- [6] H. Qiu, Y. Liu, L. Sun, Q. Tian. Proc. SPIE, 6020, Optoelectronic Materials and Devices for Optical Commun., 60202P (2005).
- [7] Е.Г. Ларионцев, В.В. Фирсов, С.Н. Чекина. Квант. электрон., 51, 597 (2021).
- [8] А.А. Каминский, Н.В. Кравцов, Н.И. Наумкин, С.Н. Чекина, В.В. Фирсов. Квант. электрон., **30**, 283 (2000).
- [9] Н.Н. Розанов, Г.Н. Винокуров, О.Б. Данилов. Опт. и спектр., 23, 624 (1967).
- [10] Е.Л. Клочан, Л.С. Корниенко, Н.В. Кравцов, Е.Г. Ларионцев, А.Н. Шелаев. ЖЭТФ, 65, 1344 (1973).

[11] Н.В. Кравцов, Е.Г. Ларионцев. Квант. электрон., 36, 192 (2006).
[12] И.И. Зарананана, Б.Б. Нарионцев. Квант. электрон. 20 (7)

Е.Г. Ларионцев, В.В. Фирсов, С.Н. Чекина

- [12] И.И. Золотоверх, Е.Г. Ларионцев. Квант. электрон., 20, 67 (1993).
- [13] Е.Л. Клочан, Л.С. Корниенко, Н.В. Кравцов, Е.Г. Ларионцев, А.Н. Шелаев. Письма в ЖЭТФ, **21**, 30 (1975).
- [14] А.М. Хромых. ЖЭТФ, 50, 281 (1966).
- [15] А.М. Волков, В.А. Киселев. ЖЭТФ, 57, 1353 (1970).