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On the electrodynamics of semiconductor magnetoplasmic waveguides
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of a field is found on the basis of the effective medium method. It is shown that in the THz range there are delayed
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1. Introduction

Magnetoplasmons (MPs) are electromagnetic waves

propagating along the surfaces of waveguide structures

with conducting elements in an external constant magnetic

field H0. It may be directed normal or tangential to the

surface or be oriented at an arbitrary angle to it. One

may control the MP dispersion by adjusting the direction

and magnitude of H0. In the present study, we consider a

surface waveguide of this kind with a tangential magnetic

field co-directional with the motion of an MP (Figure 1)
with dependence exp(iωt − ikz z ). This MP may be excited

effectively by a ribbon electron beam if its velocity is close

to the MP phase velocity. The MP then interacts effectively

with such a beam and may be amplified by it, which is rele-

vant to the design of traveling-wave amplifiers (e. g., TWTs

operating in the EHF and THz ranges). Decelerations n
on the order of several units are needed in this case. The

excitation of an MP by relativistic electron beams may be

detected if the magnetic field is switched off at some point

or a prism is installed so that the MP becomes leaky.

The simplest plasmon waveguide is a highly conducting

thin plate with a surface wave [1]. The plate may be metallic

or semiconducting, and plasmon polaritons (PPs) propagate

along its surfaces. Very slow PPs are of interest, and a thin

layer is needed to obtain them. The maximum of n′ shifts

to the low-frequency region as the thickness decreases. It is

hard to reduce the thickness to less than a few nanometers,

since the film becomes discontinuous. Semiconductor films

with their plasma frequencies (PFs) ωp being way below

those of metals are promising. When a magnetic field

is applied, cyclotron frequencies (CFs) ωH emerge, and

the deceleration may increase significantly. The Larmor

CF in copper at 1 T is ωH = 176GHz. Owing to a low

effective mass, CFs in semiconductors fall within the THz

range. PFs may be shifted into the same range by doping

and adjusting the temperature. The collision rate (CR)
may be made significantly lower than ωp and ωH , which

makes semiconductor materials promising for observation

of slow MPs. If one of the transverse dimensions is

large (strictly speaking, infinite; e. g., the y dimension in

Figure 1), the problem for a homogeneous plate with and

without a magnetic field is solved analytically. The fields

do not depend on y in this case, and the field of a slow

surface MP or PP decreases in direction ±x away from

the surface. The waves for fast MPs are leaky. The

tensor dielectric constant (DC) of semiconductor plasma

in a magnetic field should be used for MPs. In the general

case of an inhomogeneous or finite plate, the problem is

formulated as a one-dimensional integral equation (IE) with

respect to the distribution of the transverse electric field [2].
It is theoretically possible to obtain explicit dispersion equa-

tions (DEs) for plane-layered structures with homogeneous

metallic or dielectric layers [1]. It should be noted that

rigorous quantum approaches (e. g., the density functional

method [3] and nonequilibrium Green’s functions [4]) have

not been applied in the study of MPs; they were used

only to obtain static conductivities of thin films. MPs in

conducting semiconductor films were examined in [5–9].
The case with surface MPs propagating perpendicular to

the magnetic field, which was discussed in [5], differs

from the one considered in the present study. The MP

excitation was studied in [6–9]. Dispersion equations of MPs

propagating in a thin conducting film along the magnetic

field were analyzed in [10]. The properties of macroscopic

conducting elements differ greatly (especially in terms of

conductivity [11]) from those of elements that are small

compared to the mean free path of electrons, which is due

mostly to a strong CR increase attributable to the influence

of boundaries. However, Larmor radius rL = E0/(B0zω) is

rather small in strong magnetic field H0z at the examined

high frequencies and moderate electric field magnitudes E0;
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therefore, one may use the classical DC of magnetized

semiconductor plasma, which is what is considered below.

Structures of the type shown in Figure 1 are promising for

MPs, since they allow one to alter dispersion by adjusting

the configuration. In what follows, we assume that a = t
and one dimension is greater than the other (a ≫ b),
applying homogenization for a layer of metamaterial finite

in x (Figure 1) with semiconductor inclusions in a dielectric

under the influence of external magnetic field B = z0µ0H0.

It serves to focus the ribbon electron beam and has a strong

effect on the MP deceleration. It is hard to use a solid

metal plate directly, since the PF of metals is significantly

higher than the CF. In addition, the CR for metals falls

within the THz range at room temperature, which precludes

one from obtaining significant decelerations at low losses.

The structure shown in Figure 1, b (the one with round

wires) makes it possible to reduce the effective PFs by more

than 2 orders of magnitude. Assuming that their radius

r < 0.17d, a reduction of 4 orders of magnitude (or more)
is achieved at r < 0.0056d . With wavelength λ = 0.3mm,

we obtain an acceptable homogenization period d = 3µm

and radius r = 17 nm. The effective PF then falls within

the THz range, and the CR decreases by several orders of

magnitude. In a magnetic field, the corresponding MPs

are weakly magnetic in nature and may be regarded as

magnetically disturbed electric E-PPs with reduced plasmon

resonance frequencies.

Structures similar to those shown in Figure 1, a corre-

spond to MPs. They were investigated in [12]. The approach
used by the authors of this study differs slightly from

the one applied below; the coefficient of reflection from

a metamaterial layer was examined, while MPs were not

analyzed. In zero magnetic field, the structures illustrated

in Figure 1 may act as hyperbolic metamaterials (HMMs)
in certain frequency ranges [13]. The PP dispersion along

HMM layers and the calculation of coefficients of reflection

and transmission for such layers (including those with a

rotated anisotropy axis) were discussed in [14,15]. When a

magnetic field is applied, these structures turn into biaxial

artificial media (photonic crystals) and may exhibit a num-

ber of novel properties (including wave-type conversion and

nonreciprocity) upon diffraction [15]. Structures of the type

shown in Figure 1 may be classified as wire metamaterials

(wire media). They were examined in, e. g., [16–24],
where the properties of HMMs and ENZ (epsilon-near-
zero) metamaterials [25] were demonstrated, and continue

to attract attention [13]. The electrodynamics of such media

is commonly analyzed based on the Fresnel equation (FE)
only without due regard to spatial dispersion (SD). The wide

range of application of these metamaterials necessitates the

development of rigorous electrodynamic models, which is

made possible by the IE method that allows for proper

characterization of SD. The SD in such media is significant

even at low frequencies [16]. However, when MPs

propagate along the wires (in the present case, at ky = 0),
the SD may be neglected. The application of a magnetic

field, especially a field with arbitrary spatial orientation,

makes DEs obtained on the basis of rigorous approaches
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Figure 1. Plasmon waveguide structures with rectangular (a) and
round semiconductor or metallic inclusions cylindrical along the z
axis (b).

significantly more complicated, while the approach used

below is rather simple.

The aim of the present study is to examine the MP

dispersion along the boundaries of a metamaterial layer

with semiconductor and metallic inclusions (Figure 1) in an

external magnetic field and obtain the corresponding results

for a continuous thin semiconductor plate. Since dispersion

curves have a complex shape with alternating slow and fast

branches, the goal is to determine the frequencies of the

fastest waves and the characteristic transition frequencies at

which deceleration n is equal to unity. The slowest branches

lie in the regions between two closest points with n = 1 that

contain no points of fast waves with n ≈ 0.

2. Effective DC method and dispersion
equations

The derivation of DEs for the structures shown in

Figure 1 by the IE method is a rather complex numerical
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problem, which then needs to be solved numerically

multiple times to obtain complex roots. Since inclusions

are several orders of magnitude smaller than the considered

THz wavelengthsλ, we use homogenization based on the

Garnett formula to obtain an effective DC at d ≪ λ. The

concentration of conducting inclusions for the structures in

Figure 1, a is δ = b/d and may be small or on the order of 1.

The structure presented in Figure 1, a has the advantage that

the εxx component produces a significant contribution to the

MP properties. Depolarization coefficient Lz = 0 for this

structure, and the sum of the other two coefficients is unity.

Let us set Lx = b/a ≪ 1, Ly = 1− b/a . The following

modified Garnett formula (k = x , y, z ) is then obtained for

the effective DC components:

εkk − εd

Lk(εkk − εd) + εd
= δ

ε − εd

ε̃ + Lk(ε − εd)
.

Rewriting it for three diagonal tensor components, we find

εxx = εd
εd + Lx (ε − εd) + δ(1− Lx )(ε − εd)

εd + Lx (ε − εd) − δLx (ε − εd)

≈ εd [1 + δ(ε/εd − 1)],

εyy = εd
εd + Ly (ε − εd) + δ(1− Ly )(ε − εd)

εd + Ly (ε − εd) − δLy (ε − εd)

≈ εd
ε

ε − δ(ε − εd)
≈ εd − δεd(1− εd/ε),

εz z = εd + δ(ε − εd). (1)

Applying the Rytov formula [26] at a → ∞, we

obtain εxx =εz z =εd(1−δ)+δε, εyy =εd/[1− δ(1− εd/ε)]
≈ εyy = [(1− δ)/εd + δ/ε]−1 ≈ εd − εdδ(1− εd/ε), which

corresponds to (1). The corresponding Bruggeman formula

with depolarization coefficients takes the form

δ
εkk − ε

εkk + Lk(ε − εkk)
+ (1− δ)

εkk − εd

εkk + Lk(εd − εkk)
= 0.

The longitudinal component is εz z = εd + δ(ε − εd), which

is the same as (1). Quadratic equations are obtained for

transverse components. Specifically,

εxx =
Lx{εδ[εd + (1− δ)ε] − (1− δ)εdε} − ε2xx

δLxεd − εδ(1− Lx ) − (1− δ)(1− Lx)εd
. (2)

One root corresponds to a physical solution. The

first term in curly brackets in the numerator of (2)
is small. Dropping it, we obtain approximate solution

εxx = (1− Lx )[εδ + (1− δ)εd ] − δLxεd . It matches (1)
at Lx → 0. However, it may be refined by inserting into the

right-hand side of (2) (i. e., by taking one iteration). In the

second structure (Figure 1, b) with spherical inclusions, all

depolarization coefficients are equal to 1/3, and the Garnett

formula yields an isotropic medium with effective DC

εe f = εd
1 + 2δ(ε − εd)/(ε + 2εd)

1− δ(ε − εd)/(ε + 2εd)
≈ εd

(

1 + 3δ
ε − εd

ε + 2εd

)

.

(3)

In formula (3), δ = 4πr3/(3d3) ≪ 1. When the inclusions

are infinite cylinders, δ = πr2/d2 ≪ 1, Lx = Ly = 1/2,

Lz = 0. Then, εxx = εyy = ε⊥, εz z = ε‖, and

ε⊥ = εd
1 + δ(ε − εd)/(ε + εd)

1− δ(ε − εd)/(ε + εd)

≈ εd [1 + 2δ(ε − εd)/(ε + εd)],

ε‖ = εd + δ(ε − εd). (4)

This medium of metal cylinders may be an HMM in two-

frequency ranges: ε‖ε⊥ < 0 (with losses neglected). The

DC in the Drude−Lorentz form in zero magnetic field is

ε = εL − ω2
p(ω

2 − iωωc), but turns into a tensor when a

magnetic field is applied:

εxx(ω) = εyy(ω) = ε⊥ = εL −
ω2

p

ω2 − ω2
H − iωωco

,

εxy (ω) = −εyx(ω) =
−iω2

pωH

ω(ω2 − ω2
H − iωωco)

= −iβ,

εz z (ω) = ε(ω) = εL −
ω2

p

ω2 − iωωco
. (5)

Here, ω2
p = Nee2/(ε0m∗

e ) is the PF, ωH = µ0H0e/me is the

CF, ωco is the CR, εL is the Lorentz term, and me is

the effective electron mass. In metals, term εL remains

almost unchanged and real up to optical frequencies. One

may set εL = 9.3, ωp = 1.57 · 1016 Hz for silver. At

300K, ωco = 3.56 · 1013 Hz for silver. These values were

obtained with account for the electron concentration, the

experimental value of direct-current conductivity, and the

experimental value of zero-crossing frequency of the real

DC part [27]. In copper, εL = 13.09, ωp = 1.65 · 1016 Hz,
and ωc = 4.23 · 1013 Hz. The CR for metals is inversely

proportional to temperature, while concentration Ne and the

PF are virtually independent of it. At a temperature on the

order of 1K, one may set ωco ∼ 1011 Hz. Extremely strong

magnetic fields and cryogenic temperatures are needed

to obtain slow MPs in metallic structures in the THz

range. A high PF makes a uniform metal layer with

DC (3) a rather bad MP waveguide in the THz range [10].
Therefore, semiconductor structures are more convenient.

We use the relation of concentration with temperature

and bandgap for such structures. Concentrations and PFs

are low at low temperatures. The PF may be altered

by doping. With heavy doping, the PF depends only

weakly on temperature. The following materials may

be convenient: heavily doped indium antimonide n-InSb
(εL = 17.0, effective electron mass m∗

e = 0.013me , and

an electron mobility of 1.1 · 106 cm2/(V · s) at T = 77K);
n-GaAs doped with silicon (εL = 14.0, m∗

e = 0.067me , and

an electron mobility of 8500 cm2/(V · s) at 300K); and zero-

gap mercury telluride HgTe (with an electron concentration

of 1021 m−3, an effective mass of 0.013me , and a mobility

of 108 cm2/(V · s) at T = 4.2K [28]). The structures shown

in Figure 1 are convenient in that they allow one to
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adjust the effective PF, CR, and CF without the use of

low temperatures. Effective DC (3) of the metamaterial

has reduced effective PF and CR. The effective cyclotron

frequency also decreases. Therefore, the effect of a magnetic

field on the structure shown in Figure 1, b is weaker

than the corresponding effect on a solid semiconductor.

The influence of low temperatures in metals is manifested

primarily in a CR reduction. In the case of semiconductors,

the concentration and, accordingly, the PF and CR decrease

sharply. Since the PF may then become very low, doping

is needed to raise the concentration and obtain a PF in the

THz range. As for the cyclotron frequency, it falls within

the THz range at an effective mass on the order of 0.01−0.1

of the electron mass and an induction of 1 T. The ε⊥ value

from (5) should be used instead of ε in formula (4) for ε⊥;

the formula for ε‖ remains unchanged. The same is true for

formula (3), which also becomes tensorial when a magnetic

field is applied.

If a magnetic field is applied to a structure with DC (1),
we use the effective DC components denoted with a tilde

that are given in the Appendix (formula (A.1)). Using

Maxwell’s equations (formulae (A.2)−(A.12) from the

Appendix), we obtain a DE [1] for a layer that splits into

two equations:

kx±/k0x + ε̃z z

kx±/k0z + ε̃z z
= ±ψ, (6)

kx±/k0x + 1

kx±/k0x − 1
= ±ψ, (7)

where ψ = exp(−ikx±t). One may also write kx± =
= ε̃z z k0x [−i tan(kx±t/2)]±1 . Equation (7) is derived

from (6) by performing the ε̃z z → 1 substitution. Here,

k0x =
√

k2
0 − k2

z for vacuum. At a large thickness t

and with even an infinitely weak dissipation, ψ = 0;

therefore, kx± + ε̃z z
√

ko − kz = 0. We simplified the

problem under the assumption that the metamaterial layer

is thick (in these conditions, the wave reflected from

the far boundary may be neglected). The kx± quantities

are the roots of FE (A.5) such that Im
(√

B ± D
)

< 0.

This implies that wave exp(−ikx±x) decays toward

positive x . This also means that the square of the

given quantity is K2
x± = k

′2
x± − k

′′2
x± − 2ik ′

x±k ′′
x± and has

an imaginary part with its sign specified by the sign

of k ′
x±. For a forward wave along the x axis, k ′

x±k ′′
x± > 0;

for a backward wave, k ′
x±k ′′

x± < 0. In vacuum at

x > 0, the fields are written as Ey(x) = E+
0y exp(−ik0x x),

hz (x) = y0hE+
0y exp(−ik0x x), Ez (x) = E+

0z exp(−ik0x x),

hy(x) = −y0eE+
0z exp(−ik0x x). Here, y0e =k0/k0x =1/n0x

and y0h = k0x/k0 = n0x =
√

1− n2
z . Sewing

the fields together at x = 0, we obtain DE

(βz x − y0hρhz )(y0eαz x − y ez = 0. It splits into two

equations: y0e = y ez /αz x and y0h = βz x/ρhz . The

second one yields
√

1− n2
z = −nx or n2

z = 1− n2
x .

Here, nx± = kx±/k0 and nz = n = kz /k0 are complex

decelerations. For ease of classification, waves with an

infinitely weak dissipation are considered below. A finite

dissipation is taken into account in numerical calculations.

For a non-dissipative MP to be slow, n2
x± should be

a negative quantity, and kx± must be imaginary and

large in magnitude. This wave is a surface one. At

large decelerations and zero dissipation, n = kz /k0 ≫ 1,

B ≈ −k2
z (1 + ε̃z z /ε̃xx)/2, and C ≈ k4

z ε̃z z /ε̃xx . Therefore,

k2
x± ≈ [−k2

z (1 + ε̃z z /ε̃xx) ± k2
z (1− ε̃z z /ε̃xx)]/2. Taking the

upper sign in the root value, we find k2
x+ ≈ k2

z ε̃z z/ε̃xx .

if ε̃z z /ε̃xx > 0, waves within the layer have dependences

exp(∓ikx±x); if ε̃z z /ε̃xx < 0, the dependences are

exponential: exp
(

∓kz x
√

|ε̃z z /ε̃xx |
)

. In the metamaterial

half-space, the fields decrease from the boundary

toward negative x ; i. e., only the exp
(

kz x
√

|ε̃z z/ε̃xx |
)

wave should remain. Inequality ε̃z z ≥ −ε̃xx should

hold at large decelerations. Taking the upper sign

in the root value, we obtain k2
x− ≈ −k2

z . A slow

wave then also decays in the structure as exp(kz x).
Two branches of the k2

z = k2
0 − B ∓ D FE should

be used in numerical calculations. In the case of

the first DE, 1/
√

1− n2
z = −ε̃z z/nx±, which yields

n2
z = 1− (nx±/|ε̃z z )

2. If a wave is very slow, the quantity in

brackets must be imaginary and large in magnitude. The ε̃z z

quantity may be imaginary and large in magnitude at very

low frequencies. At frequencies typical of plasmonics, one

may assume that ε̃z z < 0. Using the first approximate root,

we obtain n2
z ≈ 1− n2

z /(ε̃z z ε̃xx ). Naturally, (ε̃z z ε̃xx) ≈ −1

should hold. With zero dissipation, we get ε < 0 at

ω < ωp/
√
εL and ε⊥ < 0 at ωH < ω <

√

ω2
H + ω2

p/εL. In

such a case, (ε − εd)(ε⊥ − εd) > 0, and the following is

needed to fulfill the condition:

δ ≈ ε2d + δ2(ε − εd)(ε⊥ − εd) + 1

(2εd − ε − ε⊥)εd
.

Using the second approximate root, we obtain

n2
z ≈ 1 + n2

z /ε̃
2
z z . This condition should correspond to

ε̃z z ≈ 1 or ω ≈ ωp

√
δ/

√

εd − 1 + δ(εL − εd).

To obtain more precise formulae for dispersion at large

decelerations, one needs to take into account the next

terms in the representation of quantities B and C : namely,

B = B0 + 1B , C = C0 + 1C, B0 = −k2
z (1 + ε̃z z /ε̃xx)/2,

C0 = k4
z ε̃z z/ε̃xx , 1B = k2

0(ε̃z z + ε̃yy ) − (δβ)2/ε̃xx )/2, 1C =
= k4

0(2ε̃z z ε̃yy − (δβ)2ε̃z z /ε̃xx ) − k2
z k2

0ε̃z z (1− ε̃yy/ε̃xx ). We

assume that kz ≫ k0 and the additions are small compared

to the quantities denoted with zeros. Let us start with

examining the first approximate root k2
x ≈ k2

z ε̃z z /ε̃xx . Ap-

proximate equality n2
z ≈ 1− n2

z ε̃z z /ε̃xx (i. e., ε̃z z /ε̃xx ≈ −1)
should hold for the second DE. Assuming that the cyclotron

frequency is high (ω2
H ≫ ω2

p/(εd(1− δ)/δ + εL)), we find

ω2 ≈ ω2
H or ω2 ≈ ω2

p/[2εd(1− δ)/δ + 2εL]. With low cy-

clotron frequency ω2
H ≪ ω2

p/(εd(1− δ)/δ + εL) we obtain

either ω2 ≈ ω2
p/[εd(1− δ)/δ + εL], or ω2 ≈ ω2

H/2. With

the first term of the expansion with respect to a small

parameter taken into account, the k2
x+ and k2

x− quantities
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may now be presented as

k2
x+ = −k2

z ε̃z z /ε̃xx + 1B

+
k2

z (1− ε̃z z /ε̃xx )

2

4B01B + 4(1B)2 − 21C
k4

z (1− ε̃z z/ε̃xx )
,

k2
x− = −k2

z + 1B

− k2
z (1− ε̃z z/ε̃xx )

2

4B01B + 4(1B)2 − 21C
k4

z (1− ε̃z z /ε̃xx)
.

The second case is of interest to us. Switching to

decelerations, we obtain

n2
x ≈ −n2

z

+
2ε̃yy − (δβ)2[2 + ε̃z z/ε̃xx ]/ε̃xx + ε̃z z (3ε̃yy + ε̃z z )/ε̃xx

2

− (ε̃z z − ε̃yy)
2 + [(δβ)2/ε̃xx − 2ε̃yy ](δβ)2/ε̃xx

2n2
z

.

Inserting this result into the DE, we find

n2
z ≈ (ε̃z z − ε̃yy)

2 + ⌊(δβ)2/ε̃xx − 2ε̃yy⌋(δβ)2/ε̃xx

2ε̃yy −(δβ)2(2+ε̃z z/ε̃xx )/ε̃xx +ε̃z z (3ε̃yy +ε̃z z )/ε̃xx −2
.

(8)
This is true only for large decelerations. If the δ value is

rather small,

n2
z ≈ ε̃xx(ε̃z z − ε̃yy)

2

2ε̃yy ε̃xx + 3ε̃yy ε̃z z + ε̃z z ε̃z z − 2ε̃xx
.

The denominator should be close to zero to obtain a

large deceleration. It is easy to find frequencies at which

this condition is fulfilled. In the case of the first DE,

n2
z = 1− n2

x±/ε̃
2
z z , a slow MP is obtained at ε̃z z ε̃xx < 0

and ε̃z z ≈ 1. The latter is feasible within a narrow band

at ω ≈ ωp/
√

εL − εd + (εd − 1)/δ . At εd ∼ εL ∼ 10 and

small δ ∼ 10−4, this frequency may be fairly low (on the

order of 0.3ωp · 10−2). Inserting ε̃z z = 1 into (8), we find

deceleration nz ≈ εd/
√

2εd + (3εd)/ε̃xx .

3. Numerical results and discussion

Note that all the above results also apply to the case

of complete filling δ = 1. All depolarization coefficients

are then removed from the relations, and DC (5) of a

semiconductor or metal in a magnetic field is obtained.

The DE solution in this case was discussed in [1]. The

results for thin conducting metal or semiconductor layers

on a substrate were also presented there. To obtain a slow

MP, one needs to achieve sufficiently high CF (and low CR)
values. The PF also needs to be reduced. This problem is

solved by adjusting the carrier concentration in semiconduc-

tor inclusions and selecting a material with a low effective

mass to obtain a PF in the THz range. The magnetic field

induction should then be on the order of 1 T, which is

typical of beam-focusing magnetic systems of TWTs based

on rare-earth permanent magnets. At 1 T, ωH = 13.54 THz

for InSb. The CR and the intrinsic carrier concentration

are reduced by cooling to cryogenic temperatures. The

accompanying PF reduction is compensated for by doping.

When doped heavily, n-InSb is similar to a metal, and its

PF depends only weakly on temperature. With an effective

electron mass of 0.013me and concentration Ne = 1024 m−3

in a doped sample, we obtain PF ωp = 56.6THz. Since the

conductivity at this concentration is σ = 1.76 · 107 S/m, the

CR is ωco = ω2
pε0 = 1.6GHz. These parameters are quite

acceptable for a slow MP in the THz range.

Using the simple iteration method, we then solve two

DEs

k2
z = k2

0 − B(k2
0, k2

z ) ∓ D(k2
0, k2

z ), (9)

k2
z = k2

0 −
B(k2

0, k2
z ) ∓ D(k2

0, k2
z )

ε̃2z z
, (10)

and DE (6). Four branches are possible for (9) and (10).
Algebraic values of square root D found in (9) and (10)
should be used in the calculation of k2

x . Figure 2 presents

the results for a structure with n-InSb, which converged

with a relative error no worse than 10−14 in two iterations.

The branches are denoted as 1, 2 for (9) and 3, 4 for (10);
k2

x = B ± D, where the upper sign corresponds to 1 and 3,

and the lower sign corresponds to 2 and 4. At low

frequencies, a large deceleration and fairly high losses

correspond to curve 2; therefore, this MP cannot be

excited and observed at low frequencies. As the frequency

increases, MP 1 becomes fairly fast, although there are three

narrow regions where its deceleration is large and decreases

abruptly. The same is true for MP 2. The difference is that

it is decelerated slightly at high frequencies, while MP 1

is fast. MPs 3 and 4 are characterized by a deceleration

on the order of 1 at low frequencies. The deceleration

increases at ω ≈ ωH , but then drops sharply to a fairly

low level. Another two regions with such a transition are

observed. At high frequencies, MP 3 is fast, and MP 4

has a deceleration equal to unity. The losses of all MPs are

high in the regions of sharp transitions from large to small

decelerations. However, regions with decelerations on the

order of 10 and fairly low losses are found in the THz range.

CVD (chemical vapor deposition) diamond was used as

a dielectric to plot Figures 2 and 3. It has high thermal con-

ductivity and weak frequency dispersion, which is neglected.

Figure 3 presents the results in the form of branches 3 and 4

of DE (10) for silver at room temperature. Branches 1

and 2 are not shown, since they are characterized by

extreme decelerations and such high losses that make them

irrelevant. Decelerations on the order of 4−5 are feasible

for branches 3 and 4, but only at a frequency on the order

of 1GHz. In addition, n′′ ≈ n′ in this case; i. e., the losses

are high, and it is impossible to use such MPs to amplify an

electron beam without loss compensation. The frequency of

maximum deceleration corresponds to plasmon resonance,

which contributes to an increase in losses. Thin metal

films at low temperatures may be used to obtain slow and

2 Semiconductors, 2024, Vol. 58, No. 6
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weakly dissipative MPs [10]. The deceleration is much more

significant in this case, and n ∼ 4 at n′′ ≪ n′ in the region of

moderate decelerations. The branches reveal a change in the

sign of losses n′′ in a number of regions, which is indicative

of a transition from forward MPs to backward ones. Let us

examine the equations for frequencies of such transitions

3

2

1

0

ω
/ω
H

–610 –410 –210 1 210 410
n'

1

2

4

3

Figure 2. Normalized MP dispersion as a function of deceleration

n′ = k′

z /k′

0 in the structure shown in Figure 1, a with semiconduct-

ing n-InSb: εL = 17.8, εd = 5.6, δ = 0.1, ωp = 56.6, ωH = 13.54,

and ωco = 0.0016 (THz). Curves 1, 2 and 3, 4 correspond to

Eqs. (9) and (10), respectively. (A color version of the figure

is provided in the online version of the paper).
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Figure 3. Normalized MP dispersion as a function of deceleration

n′ = k′

z /k′

0 in the structure shown in Figure 1, a with silver:

εL = 9.3, εd = 5.6, δ = 0.1, ωp = 1.57 · 1016, ωH = 1.76 · 1011,

and ωco = 3.56 · 1013 (Hz). Curves 3, 4 correspond to Eq. (10).
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Figure 4. MP dispersion in an n-InSb film with t = 10 nm at

ωH = 13.5, ωco = 1 calculated by formula (6) at different PFs ωp :

18 (curve 1), 25 (2), and 180 (3). The frequencies are given

in THz.

using the example of DE (10). Setting n = 1, we find

B(k2
0, k2

0) ± D(k2
0, k2

0) = 0. Since this wave propagates with

the velocity of light and zero losses, kx± = 0; i. e., we obtain

equations B(ko, k2
0) = 0 for kx+ = 0 and C(k2

0, k2
0) = 0 for

kx− = 0. In the case of a fast wave, kz ≈ 0, and the fre-

quency is determined from k2
0ε̃

2
z z = B(k2

0, k2
0) ± D(k2

0, k2
0).

Dissipation effectively imposes a limit on large decelerations

and enhances infinitely small ones; in the latter case, the

wave is leaky (i. e., has high radiation losses).
Figure 4 shows the dispersion in a thin homogeneous

n-InSb film with thickness t = 10 nm calculated using

formula (6) with a plus sign at different doping levels. The

frequencies of maxima and minima of n′ increase with the

carrier concentration and the plasma frequency. Decelera-

tions in excess of 100 are feasible in thin semiconductor

films. The losses are fairly low at decelerations on the

order of 10, and this regime may be implemented within the

range from 200GHz to 1 THz in samples with a thickness

of ∼ 10 nm or more. Note that the introduction of an

electrically thin CVD diamond substrate for such a film does

not alter the dispersion in any significant way, but is struc-

turally necessary and solves the issue of heat dissipation.

A thin dielectric film with thickness d may be represented as

surface conductivity σ (ω) = iωε0d(εd − 1), and one needs

just to add −iσ (ω)/ωε0 = d(εd − 1) to components εz z

and εyy (i. e., perform substitution εL → εL + εd − 1) to

account for it approximately in calculations.

Let us examine the DE solutions at ultralow frequencies

with ω → 0. We have ε̃xx(0)=εL+ω2
p/ω

2
H ≫ 1 and β2(0)

= ω4
p/(ω

2
Hω

2) ≫ 1, and quantities ε̃z z (0) ≈ −ω2
p/(ωωc),

B(0) = −
(

k2
z ε̃z z (0)/ε̃xx (0) + δ2k2

pω
2
p/

(

ω2
H ε̃xx (0)

))

/2, and
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C(0) = −k4
z

(

ε̃z z (0)/ε̃xx (0)
)

are large in magnitude

(notably, D(0, k2
z ) ≈ B(0)

(

1−C(0)/(2B2(0))
)

). Two roots

k2
x≈2B(0)−C(0)/

(

2|B(0)|
)

and k2
x≈−C(0)/

(

2|B(0)|
)

are obtained. If the value of −C(0)/2|B(0)| is small,

k2
z ≈ 2B(0) and kz ≈ (1− i)δk p

√
ωωc/

(√
2ωH

)

are found

for the first branch; i. e., this MP is highly dissipative and

fast at ultralow frequencies. At ωωc ∼ ω2
H and large k p, its

deceleration may be significant, and it is then determined

from equation k2
z + ε̃xxαkz /ε̃z z + ε̃xxα

2/ε̃z z = 0, where

α2 = δ2k2
pω

2
p/

(

ω2
H ε̃xx (0)

)

. This equation characterizes

a dissipative MP. The second branch has

k2
z ≈ k2

0 + C(0)/
(

2|B(0)|
)

, and the MP is fast if

−C(0)/|B(0)| is small: k2
z ≈ k2

0. If −C(0)/|B(0)| is large,

k2
z = −iδ2k0kcω

2
p/(2ω

2
H). Its deceleration n = (1− i)δωp/

(2ωp)
√
ωc/ω is inversely proportional to the square

root of frequency. This condition may be satisfied at

ω ≪ δ2ω2
pωc/(4ω

2
H), and the MP is dissipative. Since

ε̃2z z is large in magnitude, approximate equality kz ≈ k0

always holds true at low frequencies in the third and

fourth branches. At IR and optical frequencies, the

magnetic field has a weak effect, and a common PP with

n ≈
√

ε̃z z /(ε̃z z + 1) disturbed by the magnetic field is

observed.

4. Conclusion

The simplest artificial media made of conducting (semi-

conductor and metallic) elements (meta-atoms) and a thin

semiconductor film in a strong external magnetic field were

examined as waveguide structures for MPs of THz and

microwave ranges. These MP waveguides may act as

millimeter and THz slow-wave systems that do not require

the fabrication of combs and other structures necessitating

the use of MEMS-type technology. THz waveguides of

this kind also allow one to implement magnetic control

of dispersion. Spasers in the form of optically pumped

graphene sheets or active semiconductor structures hold

promise as a means for loss reduction. It is convenient to

use the CVD technology combined with other methods for

production of layered planar thin-film structures to fabricate

structures of the type shown in Figure 1, a.
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Appendix

Let us use the effective DC components, which take the

form

ε̃xx = εd
εd + (Lx + δ(1− Lx ))(ε⊥ − εd)

εd + Lx (1− δ)(ε⊥ − εd)

≈ εd [1 + δ(ε⊥/εd) − 1)],

ε̃yy = εd
εd + (Ly + δ(1− Ly ))(ε⊥ − εd)

εd + Ly (1− δ)(ε⊥ − εd))

≈ εd + δεd(1− εd/ε⊥),

ε̃z z = εd + δ(ε − εd),

ε̃xy (ω) = −ε̃yx (ω) = −iδβ. (A.1)

The Maxwell’s equations with an MP propagating along

axis x (ky = 0) are written as







ε̃xx −iδβ 0

iδβ ε̃yy 0

0 0 ε̃z z













Ex

Ey

Ez






=

1

k0







0 kz 0

−kz 0 kx

0 −kx 0













hx

hy

hz






,

(A.2)






hx

hy

hz






=

1

k0







0 −kz 0

kz 0 −kx

0 −kx 0













Ex

Ey

Ez






=







−nz Ey

nz Ex − nx Ez

nx Ey






.

(A.3)
Here and elsewhere, nx = kx/k0 and nz = kz /k0. Normal-

ized magnetic field h = η0H with the dimension of electric

field (V/m), where η0 =
√
µ0/ε0 is the wave impedance of

vacuum, was introduced for convenience. Common factor

exp(iωt − ikz z ) is hereinafter omitted. Inserting (A.3)
into (A.2), we obtain equations







k2
0ε̃xx − k2

z −iδβk2
0 −kx kz

iδβk2
0 k2

0ε̃yy − k2
x − k2

z 0

−kx kz 0 k2
0ε̃z z − k2

z













Ex

Ey

Ez






= 0.

(A.4)
Equating the determinant in (A.4) to zero, we find Fresnel

dispersion equation

(k2
0ε̃xx ε̃z z − k2

z ε̃z z − k2
x ε̃xx )(k

2
0ε̃yy − k2

z − k2
x )

− (δβ)2k2
0(k

2
0ε̃z z − k2

x) = 0. (A.5)

This equation yields k2
x± = B ± D, D =

√
B2 −C . Here,

B = (k2
0ε̃z z + k2

0ε̃yy − k2
z − k2

z ε̃z z/ε̃xx − (δβ)2k2
0/ε̃xx )/2,

(A.6)

C = (k2
0ε̃z z − k2

z ε̃z z/ε̃xx )(k
2
0ε̃yy − k2

z ) − (δβ)2k4
0ε̃z z/ε̃xx .

(A.7)
Inverting the matrix in (A.3), we find couplings Ey =
=[ε̃xx(nx hz−nz hz )−iδβnz hy ]/ε

2
τ , Ez =−nxhy/ε̃z z , hy =nz Ex

− nx Ez =nz ε̃z z Ex/(ε̃z z − n2
x), hz =nx Ey , hx =−nz Ey , where

ε2τ = ε̃xx ε̃yy − (δβ)2. Inserting magnetic components into
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the electrical ones (and vice versa), we obtain tangential

components

Ey = αyx Ex − ρhz hx = −nz
ε̃xx (ε̃z z − n2

x)hx + ibnz ε̃z z Ex

(ε2τ − ε̃xx n2
x)(ε̃z z − n2

x)
,

(A.8)

Ez = αz x Ex =
nx nz

n2
x − ε̃z z

Ex , (A.9)

hy = y ez Ex =
nz ε̃z z

ε̃z z − n2
x

Ex , (A.10)

hz = βz x hx − yhy Ex = −nxnz
ε̃xx (ε̃z z − n2

x)hx + ibnz ε̃z z Ex

(ε2τ − ε̃xx n2
x)(ε̃z z − n2

x )
.

(A.11)
The following coefficients were introduced here:

αyx = −nz
ibnz ε̃z z

(ε2τ − ε̃xx n2
x )(ε̃z z − n2

x)
,

ρhz = nz
ε̃xx (ε̃z z − n2

x )

(ε2τ − ε̃xx n2
x)(ε̃z z − n2

x)
,

βz x = −nx nz
ε̃xx(ε̃z z − n2

x)

(ε2τ − ε̃xx n2
x)(ε̃z z − n2

x)
,

yhy = nx nz
ibnz ε̃z z

(ε2τ − ε̃xx n2
x)(ε̃z z − n2

x)
. (A.12)

The normal components of fields in a metama-

terial (at x < 0) may be presented as Ex(x) =

= E+
1 exp(ikx+x)+E−

1 exp(ikx−x), hx(x)=h+
1 exp(−ik(+)

x x)

− h−
1 exp(ik(−)

x x) (i. e., as a combination of two FE solutions

kx+ and kx− decaying with depth in the structure). The

tangential components are determined with the use of

(A.8)−(A.11). In the case of a finite layer, one should

take into account the waves propagating in both directions

along x . There are two DEs (6), (7) for a homogeneous

layer of this kind.
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