¹¹ Селективное усиление дефектных мод мультидефектного фотонного кристалла

© И.А. Глухов^{1,2}, С.Г. Моисеев^{1,2}

¹ Ульяновский государственный университет, Ульяновск, Россия

² Ульяновский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, Ульяновск, Россия e-mail: glukhov91@vandex.ru

Поступила в редакцию 26.04.2024 г. В окончательной редакции 29.06.2024 г. Принята к публикации 30.10.2024 г.

> Исследованы спектральные характеристики одномерных фотонно-кристаллических структур, образованных последовательной комбинацией брэгговских отражателей и слоев диэлектрика. Обнаружено формирование в области фотонной запрещенной зоны одной или нескольких гребенок спектральных линий дефектных мод. Особенности распределения оптического излучения по дефектной фотонной структуре позволяют реализовать селективное усиление дефектных мод.

> Ключевые слова: дефектная фотонно-кристаллическая структура, дефектные моды, локализация излучения, селективное усиление.

DOI: 10.61011/OS.2024.11.59502.6427-24

Введение

В спектре пропускания диэлектрических слоистопериодических структур с определенным образом согласованной толщиной слоев, известных также как фотонные кристаллы, имеются фотонные запрещенные зоны (ФЗЗ) — интервалы частот, в которых отсутствует пропускание при высоком коэффициенте отражения. В ФЗЗ также могут быть сформированы одна или несколько относительно узких спектральных полос пропускания (подавленного отражения) вследствие нарушения строгой периодичности оптической длины пути в слоях структуры [1]. Такие "дефектные" слои могут иметь толщину или показатель преломления, отличающиеся от слоев фотонного кристалла. Моды, связанные с наличием дефектных слоев в структуре фотонного кристалла, также называются "дефектными" [2-4]. Для управления количеством и частотами дефектных мод используются различные материалы и метаструктуры (жидкокристаллические материалы, нанокомпозитные материалы, двумерные структуры, графен и др. [5–8]), а также фотонные структуры различной топологии [8-11]. Особенности спектральных характеристик дефектных фотонных кристаллов используются для разработки отражателей, фильтров, мультиплексоров и других устройств фотоники и оптоэлектроники [12].

В настоящей работе предложен дизайн одномерной фотонно-кристаллической структуры, в области Ф33 которой имеется одна или несколько групп спектральных линий пропускания (спектральных гребенок), связанных с дефектными модами. Такая структура представляет собой мультидефектный фотонный кристалл (МДФК) распределённый брэгговской отражатель, разделенный на части (домены) несколькими дефектными слоями.

Дизайн дефектной структуры. Гребенки спектральных линий дефектных мод в ФЗЗ

Рассмотрим МДФК, построенный на основе брэгговского отражателя с элементарной ячейкой [АВ], где слои А и В выполнены из диэлектрических материалов с показателями преломления n_A и n_B соответственно. Этот диэлектрический отражатель разделен слоями $D_1, D_2, \ldots, D_{M-1}$ на M идентичных доменов $[AB]^N$ с числом бинарных слоев N в каждом из них. Слоистая фотонная структура завершается дополнительным дефектным слоем D_M . Материалы дефектных слоев D_i (i = 1, ..., M) характеризуются одинаковыми показателями преломления n_D. Таким образом, последовательность диэлектрических слоев МДФК описывается формулой [[AB]^ND]^M. Дизайн МДФК представлен на рис. 1. Рассматривается случай, когда МДФК погружен в однородную непоглощающую среду (воздух) и световая волна падает нормально на МДФК со стороны поверхностного слоя А.

Для расчета спектральных характеристик слоистопериодической структуры используется метод матриц переноса [13]. Для усиливающих слоев аналитические выражения для комплексных коэффициентов отражения и пропускания приведены в монографии [14]. Матрица переноса для всей структуры формируется последовательным перемножением матриц интерфейсов и матриц переноса через слои материала.

Все расчеты в настоящей работе проведены для следующих фиксированных параметров: $n_A = 3.35$ (GaAs), $n_B = 2.89$ (AlAs) [15], N = 10, толщины d_A и d_B слоев A и B соответствуют условию брэгговского резонансного отражения на вакуумной длине волны $\lambda_{\rm Br} = 1.55\,\mu{\rm m}$:

Рис. 1. Геометрия задачи: МДФК имеет структурную формулу $[[AB]^ND]^M$, где $[AB]^N -$ брэгтовские отражатели (домены), выполненные из слоев A и B, N — число периодов [AB] в доменах, D — дефектные слои, M — число доменов (совпадает с числом дефектных слоев). Световая волна падает на МДФК со стороны слоя A.

Рис. 2. Спектры пропускания (синие кривые) и отражения (красные кривые) МДФК с числом доменов M = 4 для различной толщины дефектных слоев: $d_D = d_A(a)$, $23d_A(b)$.

 $d_A n_A = d_B n_B = \lambda_{\rm Br}/4$. Ниже рассматривается также случай МДФК с одним усиливающим дефектом, оптические характеристики которого определяются комплексным показателем преломления $\tilde{n}_D = n_D + ik_D$, где $n_D = 3.35$ и $k_D = -10^{-3}$.

На рис. 2 представлены спектры пропускания и отражения МДФК с одинаковым числом доменов (M = 4) и дефектными слоями разной толщины ($d_D = d_A$ и $d_D = 23d_A$). Можно видеть, что в отличие от случая фотонного кристалла с единственным дефектным слоем, в ФЗЗ которого формируются отдельные спектральные линии пропускания, в спектре пропускания МДФК спектральные линии дефектных мод сгруппированы в гребенки. Число линий пропускания в каждой спектральной гребенке определяется числом доменов и составляет величину, равную M - 1. В частности, в случае, показанном на рис. 2, для M = 4 число линий

в каждой гребенке равно 3. Количество спектральных гребенок в ФЗЗ МДФК возрастает с увеличением d_D : для $d_D = d_A$ наблюдается одна гребенка (рис. 2, *a*), а для $d_D = 23d_A$ — три гребенки (рис. 2, *b*).

Из рис. 2 также видно, что спектральная ширина и расстояние между спектральными линиями дефектных мод в гребенке уменьшаются с увеличением общего числа дефектных мод. К аналогичному эффекту приводит увеличение числа элементарных ячеек N в доменах (на рис. 2 не показано).

На частотах, отвечающих дефектным модам, световая волна локализуется в области дефектных слоев МДФК. Однако для разных дефектных мод локализация оптического поля может наблюдаться в различных слоях структуры. Анализ распределения поля по МДФК показывает, что на частотах крайних мод гребенки областями локализации световых волн являются все дефектные слои (за исключением внешнего слоя DM), в то время как для внутренних мод интенсивность излучения может существенно различаться в разных дефектных слоях. В частности, для МДФК с шестью доменами (M = 6)центральная дефектная мода (на длине волны 1.55 µm) локализуется на первом, третьем и пятом дефектных слоях, а соседние с ней дефектные моды (вблизи длин волн 1.54 и 1.56 µm) — преимущественно на первом, втором, четвертом и пятом дефектных слоях (здесь и далее нумерация дефектных слоев ведется в направлении распространения световой волны).

Отличие в характере локализации оптического излучения на разных дефектных модах открывает возможность селективного управления излучением на разных частотах. Для этого следует разместить в дефектных слоях некую среду, выполняющую роль, например, поляризатора, поглотителя и др. Ниже продемонстрирована возможность избирательного усиления дефектных мод за счет применения усиливающей среды в качестве материала дефектного слоя (оптические характеристики усиливающего материала приведены выше).

Спектры пропускания и отражения МДФК с шестью доменами (M = 6), в составе которого один из дефектных слоев выполнен из усиливающего материала, представлены на рис. 3. Наличие усиливающего слояв МДФК приводит к увеличению энергетических коэффициентов отражения и пропускания на частотах дефектных мод. В соответствии с отмеченными выше особенностями локализации поля на дефектах структуры наличие усиления в первом дефектном слое приводит к усилению всех дефектных мод (рис. 3, a), во втором дефектном слое — боковых дефектных мод (рис. 3, b), в третьем (центральном) дефектном слое — крайних и в меньшей степени центральной дефектной моды (рис. 3, *c*). При наличии усиления в четвертом или пятом дефектных слоях спектральная картина оказывается практически идентичной случаю усиления соответственно во втором и первом дефектных слоях. Если усиливающим является последний (шестой) дефектный слой, то наблюдается усиление всех дефектных мод в гребенках,

Рис. 3. Спектры пропускания (синие кривые) и отражения (красные кривые) МДФК с усилением в первом (a), втором (b), третьем (c) дефектных слоях. Параметры структуры: число доменов M = 6, толщина дефектных слоев $d_D = d_A$. Остальные параметры те же, что и на рис. 2.

однако уровень этого усиления самый низкий, поскольку этот дефект находится вне резонаторов, образованных доменами МДФК.

2. Заключение

Дефектные структуры с гребенчатым спектром пропускания на фоне широкой ФЗЗ могут представлять интерес с точки зрения разработки дизайна многоканальных резонаторных и лазерных структур, сенсоров, оптических фильтров. Общее число и положение спектральных гребенок, а также отдельных спектральных линий дефектных мод в спектре МДФК определяется толщиной дефектных слоев, количеством доменов (брэгговских отражателей) и числом элементарных ячеек в них. Неоднородный характер распределения поля дефектных мод по МДФК позволяет избирательно подавлять или усиливать отражение и пропускание в узких спектральных полосах в запрещенной области спектра.

Финансирование работы

Работа выполнена при поддержке гранта Российского научного фонда (проект № 23-79-30017).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- K. Sakoda. Optical Properties of Photonic Crystals. Springer Series in Optical Sciences (Springer, Berlin, 2005).
- [2] S.M. Jeong, N.Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, G. Suzaki. Appl. Phys. Lett., 90, 261108 (2007). DOI: 10.1063/1.2752017
- [3] С.В. Елисеева, Д.И. Семенцов. Опт. и спектр., 109 (5), 790– 798 (2010).
 [S.V. Elisceva, D.I. Sementsov. Opt. Spectrosc., 109 (5), 729–

[S.V. Enseeva, D.I. Sementsov. Opt. Spectrosc., **109** (3), 729-737 (2010). DOI: 10.1134/S0030400X10110123].

- [4] С.Г. Моисеев, В.А. Остаточников. Квант. электрон., 46 (8), 743–748 (2016).
 [S.G. Moiseev, V.A. Ostatochnikov. Quant. Electron., 46 (8),
- 743–748 (2016). DOI: 10.1070/QEL16086].
 [5] S.G. Moiseev, I.A. Glukhov, V.A. Ostatochnikov, A.P. Anzulevich, S.N. Anzulevich. J. Appl. Spectrosc., 85 (3), 511–516, (2018). DOI: 10.1007/s10812-018-0681-x
- [6] V.S. Gerasimov, A.E. Ershov, R.G. Bikbaev, I.L. Rasskazov, I.V. Timofeev, S.P. Polyutov, S.V. Karpov. JQSRT, 224, 303– 308 (2019). DOI: 10.1016/j.jqsrt.2018.11.028
- [7] F. Wu, M. Chen, S. Xiao. Opt. Lett., 47, 2153–2156 (2022).
 DOI: 10.1364/OL.455910
- [8] F.S. Saeidi, M. Moradi. Opt. Commun., 493, 126999 (2021).
 DOI: 10.1016/j.optcom.2021.126999
- [9] M. Renilkumar, P. Nair. Opt. Mater., 33 (6), 853–858 (2011).
 DOI: 10.1016/j.optmat.2011.01.008
- [10] I.S. Panyaev, G. Sannikov, Y.S. Dadoenkova, N.N. Dadoenkova. IEEE Sens. J., 22 (23), 22428–22437 (2022).
 DOI: 10.1109/JSEN.2022.3217117
- [11] И.А. Глухов, С.Г. Моисеев. Опт. и спектр., 11, 1475–1478 (2023). DOI: 10.61011/OS.2023.11.57005.5095-23
- [12] Q. Gong, X. Hu. *Photonic Crystals: Principles and Applications* (Jenny Stanford Publishing, 2014).
- [13] М. Борн, Э. Вольф. Основы оптики (Наука, М., 1970).
 [M. Born,E. Wolf. Principles of Optics (Cambridge University, Cambridge, 1999)].
- [14] Б.Б. Бойко, Н.С. Петров. Отражение света от усиливающих и нелинейных сред (Минск, Наука и Техника, 1988).
- [15] A.D. Rakić, M.L. Majewski. J. Appl. Phys., 80, 5909–5914 (1996). DOI: 10.1063/1.363586